PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Funnel and Gate Permeable Reactive Barrier Permeable Reactive Barrier Configuration for Contaminated Groundwater Remediation – Designing, Installation, and Modeling: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater is a valuable resource whose purity is necessary for human survival. It serves as a significant source of water for household, industrial, and agricultural purposes. Traditional groundwater pollution remediation technologies include pump & treat, phase extraction, aeration gas of groundwater, bioremediation, and chemical oxidation. Permeable reactive barrier (PRB) is one of the most key technology being developed as alternatives to the pump and manage method for the remedying contaminated groundwater. An overview on the groundwater significant as important sources for water, sources of groundwater contamination, transport of contaminants, and groundwater remediation technologies have been discussed in this paper. In addition to reactive media, the design and installation of PRBs of funnel-gate configurations and their application as a remediation technique have been covered in this review. Finally reaction mechanisms in groundwater, contaminant transport governing equation, isotherms sorption models, kinetic sorption models, breakthrough curves modeling have been presented in this review. PRB technique provides financial benefits while also encouraging waste material reuse, so contributing to environmental sustainability. Funnel and gate PRB can offer one or more dense treatment areas for maximizing groundwater pollution plume capture. Funnel-gate PRB is characterized by smaller reaction area, ease in replacement and removal during the blocking of the reactive barrier by fine soil particles and reactive sediments.
Twórcy
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, IQ-BG, 10071, Baghdad, Iraq
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, IQ-BG, 10071, Baghdad, Iraq
Bibliografia
  • 1. Ghisellini P., Cialani C., Ulgiati S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems, J. Clean. Prod. 114, 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007.
  • 2. Faisal A.A.H., Nassir Z.S. 2016. Modeling the removal of cadmium ions from aqueous solutions onto olive pips using neural network technique, Al-Khwarizmi Eng. J. 12, 1–9.
  • 3. Rashid H., Faisal A. 2019. Removal of dissolved trivalent chromium ions from contaminated wastewater using locally available raw scrap iron-aluminum waste, Al-Khwarizmi Eng. J. 15, 134–143.
  • 4. Ibrahim A.A., Ibrahim M.A., Yusuf A.G. 2021. Implications of industrial effluents on surface water and ground water, World J. Adv. Res. Rev. 09, 330–336. https://doi.org/10.30574/wjarr.2021.9.3.0110.
  • 5. Lehosmaa K., Jyväsjärvi J., Ilmonen J., Rossi P.M., Paasivirta L., Muotka T. 2018. Groundwater contamination and land drainage induce divergent responses in boreal spring ecosystems, Sci. Total Environ. 639, 100–109. https://doi.org/10.1016/j.scitotenv.2018.05.126.
  • 6. Panahi G., Eskafi M.H., Rahimi H., Faridhosseini A., Tang X. 2021. Physical–chemical evaluation of groundwater quality in semi-arid areas: case study—Sabzevar plain, Iran, Sustain. Water Resour. Manag. 7, 1–15. https://doi.org/10.1007/s40899-021-00576-y.
  • 7. Kisku D., Abhisekh H.S., Singh S., T.B. 2015. Singh, In situ remediation technique of groundwater contamination: a review, Int. J. Adv. Res. 3, 1095–1104.
  • 8. Satheeskumar V., Subramani T., Lakshumanan C., Roy P.D., Karunanidhi D., 2021. Groundwater chemistry and demarcation of seawater intrusion zones in the Thamirabarani delta of south India based on geochemical signatures, Environ. Geochem. Health. 43, 757–770.
  • 9. Wang D., Wu J., Wang Y., Ji Y., 2020. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment, and management, Expo. Heal. 12, 307–322.
  • 10. Soujanya Kamble B., Saxena P.R., Kurakalva R.M., K. Shankar K. 2020. Evaluation of seasonal and temporal variations of groundwater quality around Jawaharnagar municipal solid waste dumpsite of Hyderabad city, India, SN Appl. Sci. 2,1–22.
  • 11. Thiruvenkatachari R., Vigneswaran S., Naidu R. 2008. Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem. 14, 145–156.
  • 12. Ogunbanwo O.M., Kay P., Boxall A.B., Wilkinson J., Sinclair C.J., Shabi R.A., Fasasi A.E., Lewis G.A., Amoda O.A., Brown L.E. 2022. High concentrations of pharmaceuticals in a Nigerian river catchment, Environ. Toxicol. Chem. 41, 551–558.
  • 13. I. D valos-Pe a, R.M. a Fuentes-Rivas, R.M. a G. Fonseca-Montes de Oca, J.A. Ramos-Leal, J. Mor n-Ram rez, G. n Mart nez Alva 2021. Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley, Int. J. Environ. Res. Public Health. 18, 11195.
  • 14. P. Li P., J. Wu J. 2019. Sustainable living with risks: meeting the challenges, Hum. Ecol. Risk Assess. An Int. J. 25, 1–10.
  • 15. Tiwari A.K., Singh A.K., Mahato M.K. 2018. Assessment of groundwater quality of Pratapgarh district in India for suitability of drinking purpose using water quality index (WQI) and GIS technique, Sustain. Water Resour. Manag. 4, 601–616.
  • 16. Tatti F., Papini M.P., Torretta V., Mancini G., Boni M.R., Viotti P., 2019. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones, J. Contam. Hydrol. 222, 89–100.
  • 17. Elumalai V., Nethononda V.G., Manivannan V., Rajmohan N., Li P., Elango L. 2020. Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu catchment, Limpopo, South Africa, J. African Earth Sci. 171, 103967.
  • 18. Liu X., Pang H., Liu X., Li Q., Zhang N., Mao L., Qiu M., Hu B., Yang H., Wang X. 2021. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions, Innov. 2.
  • 19. C. Di Salvo, 2022. Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review, Water (Switzerland), 14. https://doi.org/10.3390/w14152307.
  • 20. Padhye L.P., Srivastava P., Jasemizad T., Bolan S., Hou D., Sabry S., J. rg Rinklebe, D. OE Connor, Lamb D., Wang H., 2023. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater, J. Hazard. Mater, 131575.
  • 21. Mohd Pu’ad N.A.S., Koshy P., Abdullah H.Z, Idris M.I., Lee T.C., 2019. Syntheses of hydroxyapatite from natural sources, Heliyon. 5, e01588. https://doi.org/10.1016/j.heliyon.2019.e01588.
  • 22. Su, Z. Wu J., He X., Elumalai V. 2020. Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using Grey Markov model in Yinchuan area of northwest China, Expo. Heal. 12, 447–468.
  • 23. Yin S., Herath G., Heng S., Kalpage S. 2017. Using permeable reactive barriers to remediate heavy metalcontaminated groundwater through a laboratory column experiment, Am. J. Environ. Sci. 13, 103–115.
  • 24. Kumar M., Chaminda T., Honda R., Furumai H. 2019. Vulnerability of urban waters to emerging contaminants in India and Sri Lanka: resilience framework and strategy, APN Sci. Bull.
  • 25. Subba Rao N., Ravindra B., Wu J. 2020. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India, Hum. Ecol. Risk Assess. An Int. J. 26, 2316–2348.
  • 26. McDonough L.K.,. O Carroll D.M., Meredith K., M.S. Andersen, C. Bregger, H. Huang, H. Rutlidge, M.I. Behnke, R.G.M. Spencer, A. McKenna, 2020. Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge, Water Res. 169 (2020) 115201.
  • 27. M.A. Nwachukwu, Prospective techniques for insitu treatment and protection of aquifers: A sustainable hydrology review, Int. J. Water Res. Environ. Eng. 6 (2014) 131–143.
  • 28. Maitra S. 2019. Permeable reactive barrier: A technology for groundwater remediation-A mini review, Biodegradation. 80, 203.
  • 29. N. Dur es, L. s A.B. Novo, C. Candeias, E.F. Da Silva, 2018. Distribution, transport and fate of pollutants, in: Soil Pollut., Elsevier, 2018, 29–57.
  • 30. Bi P., Pei L., Huang G., Han D., Song J. 2021.Identification of groundwater contamination in a rapidly urbanized area on a regional scale: A new approach of multi-hydrochemical evidences, Int. J. Environ. Res. Public Health. 18, 12143.
  • 31. Haldar S., A. Ghosh A. 2020. Microbial and plantassisted heavy metal remediation in aquatic ecosystems: a comprehensive review, 3 Biotech. 10, 205.
  • 32. Igboama W.N., Hammed O.S., Fatoba J.O., Aroyehun M.T., Ehiabhili J.C. 2022. Review article on impact of groundwater contamination due to dumpsites using geophysical and physiochemical methods, Appl. Water Sci. 12, 1–14. https://doi.org/10.1007/s13201-022-01653-z.
  • 33. Panneerselvam B., Ravichandran N., Kaliyappan S.P., Karuppannan S., Bidorn B. 2023, Quality and Health Risk Assessment of Groundwater for Drinking and Irrigation Purpose in Semi-Arid Region of India Using Entropy Water Quality and Statistical Techniques, Water (Switzerland). 15. https://doi.org/10.3390/w15030601.
  • 34. Kumar A., Nirpen L., Ranjan A., Gulati K., Thakur S., Jindal T. 2014. Microbial groundwater contamination and effective monitoring system, Asian J. Environenmental Sci. 9, 37–48.
  • 35. Kumar M., Gogoi A., Kumari D., Borah R., Das P., Mazumder P., Tyagi V.K. 2017. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment, J. Hazardous, Toxic, Radioact. Waste. 21, 4017007.
  • 36. Lapworth D.J., Lopez B., Laabs V., Kozel R., Wolter R., Ward R., Vargas Amelin E., Besien T., Claessens J., Delloye F. 2019. Developing a groundwater watch list for substances of emerging concern: a European perspective, Environ. Res. Lett. 14 (2019), 35004.
  • 37. Ortúzar M., Esterhuizen M., Olicón-Hernández D.R., González-López J., Aranda E., Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems, Front. Microbiol. 13 (2022) 1–25. https://doi.org/10.3389/fmicb.2022.869332.
  • 38. Al-Hashimi O., Hashim K., Loffill E., Marolt eba ek T., Nakouti I., Faisal A.A.H., Al-Ansari N. 2021. A comprehensive review for groundwater contamination and remediation: occurrence, migration and adsorption modelling, Molecules. 26, 5913.
  • 39. Fiori A., Zarlenga A., Bellin B., Cvetkovic V., Dagan G. 2019. Groundwater contaminant transport: Prediction under uncertainty, with application to the MADE transport experiment, Front. Environ. Sci. 7. 1–16. https://doi.org/10.3389/fenvs.2019.00079.
  • 40. Tetteh R.N. 2015. Chemical soil degradation as a result of contamination: A review, J. Soil Sci. Environ. Manag. 6, 301–308.
  • 41. Cecconet D., Sabba F., Devecseri M., Callegari A., Capodaglio A.G. 2020. In situ groundwater remediation with bioelectrochemical systems: a critical review and future perspectives, Environ. Int. 137, 105550.
  • 42. Al-Hashimi O., Hashim K., Loffill E., Marolt Čebašek T., Nakouti I., Faisal A.A.H., Al-Ansari N. 2021. A comprehensive review for groundwater contamination and remediation: Occurrence, migration and adsorption modelling, Molecules. 26, 1–28. https://doi.org/10.3390/molecules26195913.
  • 43. Azubuike C.C., Chikere C.B., Okpokwasili G.C. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects, World J. Microbiol. Biotechnol. 32, 1–18. https://doi.org/10.1007/s11274-016-2137-x.
  • 44. Antelmi M., Renoldi F., Alberti L. 2020. Analytical and numerical methods for a preliminary assessment of the remediation time of pump and treat systems, Water (Switzerland). 12. https://doi.org/10.3390/w12102850.
  • 45. Obiri-Nyarko F., Grajales-Mesa S.J., Malina G. 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere. 111, 243–259.
  • 46. Madzin Z., Kusin F.M., Zahar M.S.M., Muhammad S.N. 2016. Passive in situ remediation using permeable reactive barrier for groundwater treatment, Pertanika J. Sch. Res. Rev. 2.
  • 47. Rad P.R., A. Fazlali A. 2020. Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution, J. Water Process Eng. 35, 101196.
  • 48. Thakur A.K., Kumar M. 2021. Reappraisal of permeable reactive barrier as a sustainable groundwater remediation technology, Contam. Drink. Wastewater Sources Challenges Reigning Technol, 179–207.
  • 49. Yin S., Herath G., Heng S., Kalpage S. 2017. Using Permeable Reactive Barriers to Remediate Heavy Metal-Contaminated Groundwater through a Laboratory Column Experiment, Am. J. Environ. Sci. 13, 103–115. https://doi.org/10.3844/ajessp.2017.103.115.
  • 50. Luo X., Liu H., Huang G., Li Y., Zhao, Li Y.X., 2016. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies, Environ. Sci. Pollut. Res. 23, 870–877.
  • 51. Wilkin R.T., Acree S.D., Ross R.R., Puls R.W., Lee T.R., Woods L.L. 2014. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater, Sci. Total Environ. 468, 186–194.
  • 52. Faisal A.A.H., Alquzweeni S.S., Naushad M., Alothman A.A., Sharma G. 2020. Removal of dissolved benzaldehyde from contaminated water stream using granular iron slag by-product in the permeable reactive barrier technology, Desalin. Water Treat. 203, 315–326.
  • 53. McMurtry D.C., Elton R.O. 1985. New approach to in situ treatment of contaminated groundwaters, Environ. Prog. 4, 168–170.
  • 54. Aloni, P. Hiwale, S.D. Shinde, A.S. Pathan 2022. Permeable Reactive Barrier Technology for Contaminated Remediation: Review.
  • 55. Shabalala A.N. 2013. Assessment of locally available reactive materials for use in permeable reactive barriers (PRBs) in remediating acid mine drainage, Water SA. 39, 251–256.
  • 56. Klammler H., Hatfield K. 2008. Analytical solutions for flow fields near continuous wall reactive barriers, J. Contam. Hydrol. 98, 1–14.
  • 57. Li H., Liu Q. 2022. Reaction medium for permeable reactive barrier remediation of groundwater polluted by heavy metals, Front. Environ. Sci. 10, 1–20. https://doi.org/10.3389/fenvs.2022.968546.
  • 58. Pathirage U., Indraratna B. 2015. Assessment of optimum width and longevity of a permeable reactive barrier installed in an acid sulfate soil terrain, Can. Geotech. J. 52, 999–1004.
  • 59. Song J., Huang G., Han D., Hou Q., Gan L., Zhang M. 2021. A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater: Current status and future prospects, J. Clean. Prod. 319, 128644. https://doi.org/10.1016/j.jclepro.2021.128644.
  • 60. Shabalala A.N., Ekolu S.O., Diop S. 2014. Permeable reactive barriers for acid mine drainage treatment: a review, Constr. Mater. Struct., 1416–1426.
  • 61. Bilardi S., Calabrò P.S., Moraci N. 2023. A Review of the Hydraulic Performance of Permeable Reactive Barriers Based on Granular Zero Valent Iron, Water (Switzerland). 15. https://doi.org/10.3390/w15010200.
  • 62. Budania R., Dangayach S. 2023. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination, J. Environ. Manage. 332, 117343.
  • 63. He Q., Si S., Yang J., Tu X. 2019.Application of permeable reactive barrier in groundwater remediation, in: E3S Web Conf., EDP Sciences, 6021.
  • 64. Tsang D.C.W. 2014. Influence of natural organic matter on contaminant removal by permeable reactive barrier, in: Role Colloid. Syst. Environ. Prot., Elsevier, 19–40.
  • 65. Starr R.C., Cherry J.A. 1994. In situ remediation of contaminated ground water: The funnel and gate system, Groundwater. 32, 465–476.
  • 66. Tachavises C. 1998. Flow rates past vertical groundwater cut-off walls: Influential factors and their impact on wall selection, The University of Wisconsin-Madison.
  • 67. Birke V., Burmeier H., Rosenau D. 2003. Design, construction, and operation of tailored permeable reactive barriers, Pract. Period. Hazardous, Toxic, Radioact. Waste Manag. 7, 264–280.
  • 68. Faisal A.A.H., Sulaymon A.H., Khaliefa Q.M. 2018. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation, Int. J. Environ. Sci. Technol. 15, 1123–1138. https://doi.org/10.1007/s13762-017-1466-0.
  • 69. Goo J.-Y., Kim J.-H., Lee Y.J., Lee S., 2021. Configuration of Non-Pumping Reactive Wells Considering Minimum Well Spacing, Appl. Sci. 11, 11408.
  • 70. Torregrosa M., Schwarz A., Nancucheo I., Balladares E., 2019. Evaluation of the bio-protection mechanism in diffusive exchange permeable reactive barriers for the treatment of acid mine drainage, Sci. Total Environ. 655, 374–383.
  • 71. Freidman B.L., Terry D., Wilkins D., Spedding T., Gras S.L., Snape I., Stevens G.W., Mumford K.A., 2017. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island, Chemosphere. 174, 408–420.
  • 72. Naidu R., Birke V., Permeable reactive barrier: sustainable groundwater remediation, Taylor & Francis, 2015.
  • 73. Grajales-Mesa S.J, Malina G., Kret E., Szklarczyk T. 2020. Designing a permeable reactive barrier to treat TCE contaminated groundwater: Numerical modelling/Dise o de una barrera permeable reactiva para el tratamiento de aguas subterr neas contaminadas con tricloroetileno: modelo numerico, Tecnol. a y Ciencias Del Agua. 11, 78–106.
  • 74. Higgins M.R., Olson T.M. 2009. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation, Environ. Sci. Technol. 43, 9432–9438.
  • 75. Erto A., Lancia A., Bortone I., Di Nardo A., Di Natale M., Musmarra D. 2011. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation, J. Environ. Manage. 92, 23–30.
  • 76. Klammler H., Hatfield K. 2009. Analytical solutions for the flow fields near funnel and gate reactive barriers with hydraulic losses, Water Resour. Res. 45.
  • 77. Courcelles B. 2015. Guidelines for Preliminary Design of Funnel-and-Gate Reactive Barriers, Int. J. Environ. Pollut. Remediat. 3. https://doi.org/10.11159/ijepr.2015.003.
  • 78. Walkons C.C. 2016. Designing a permeable reactive barrier for the remediation of copper contaminated groundwater.
  • 79. Thakur A.K., Vithanage M., Das D.B., Kumar M. 2020. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment, Environ. Technol. Innov. 19, 100917. https://doi.org/10.1016/j.eti.2020.100917.
  • 80. Carey M.A., Fretwell B.A., Mosley N.G., Smith J.W.N. 2002. Guidance on the use of permeable reactive barriers for remediating contaminated groundwater, Natl. Groundw. Contam. L. Cent. Rep. NC/01/51, UK Environ. Agency, Bristol. 140pp.
  • 81. Hosseini S.M., Tosco T. 2015. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer, J. Contam. Hydrol. 179, 182–195.
  • 82. M. aw Po o ski, K. Pawluk, I. Rybka, 2017. Optimization model for the design of multi-layered permeable reactive barriers, in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 72017.
  • 83. Santisukkasaem U., Das D.B., 2019. A non-dimensional analysis of permeability loss in zero-valent iron permeable reactive barrier (PRB), Transp. Porous Media. 126, 139–159.
  • 84. Gao C., Song Q, Li X., Wang L., Zhai Y., Du X., Yin W. 2021. Remediation of Benzene and 1, 2-Dichloroethylene in Groundwater by Funnel and Gate Permeable Reactive Barrier (FGPRB): A Case Study, Water. 13, 3336.
  • 85. Wali S.U., Alias N., Bin Harun S. 2020. Hydrogeochemical evaluation and mechanisms controlling groundwater in different geologic environments, Western Sokoto Basin, Northwestern Nigeria, SN Appl. Sci. 2, 1–28. https://doi.org/10.1007/s42452-020-03589-y.
  • 86. Mena E., Ruiz C., Villase J. or, M.A. Rodrigo, P. Ca izares, 2015. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil, J. Hazard. Mater. 283, 131–139.
  • 87. Subba Rao N., Sunitha B., Sun L., Deepthi Spandana B., Chaudhary M., 2020. Mechanisms controlling groundwater chemistry and assessment of potential health risk: A case study from South India, Chemie Der Erde. 80, 125568. https://doi.org/10.1016/j.chemer.2019.125568.
  • 88. Al-Hashimi O., Hashim K., Loffill E., Nakouti I.,. Faisal A.A.H, T.M. eba ek, 2023. Eco-friendly remediation of tetracycline antibiotic from polluted water using waste-derived surface re-engineered silica sand, Sci. Rep. 13, 13148.
  • 89. Al Juboury M.F, Alshammari M.H., Al-Juhaishi M.R., Naji L.A., Faisal A.A.H., Naushad M., Lima E.C. 2020. Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye, Water Sci. Technol. 81, 1494–1506. https://doi.org/10.2166/wst.2020.241.
  • 90. Alquzweeni S.S., Alkizwini R.S. 2020. Removal of cadmium from contaminated water using coated chicken bones with double-layer hydroxide (Mg/ Fe-LDH), Water. 12, 2303.
  • 91. Masinga T., Moyo M., Pakade V.E. 2022. Removal of hexavalent chromium by polyethyleneimine impregnated activated carbon: Intra-particle diffusion, kinetics and isotherms, J. Mater. Res. Technol. 18, 1333–1344.
  • 92. Kulisz M., Kujawska J. 2021. Application of artificial neural network (ANN) for water quality index (WQI) prediction for the river Warta, Poland, J. Phys. Conf. Ser. 2130. https://doi.org/10.1088/1742-6596/2130/1/012028.
  • 93. Pal J., Chakrabarty D. 2020. Assessment of artificial neural network models based on the simulation of groundwater contaminant transport, Hydrogeol. J. 28, 2039–2055. https://doi.org/10.1007/s10040-020-02180-4.
  • 94. Gurumoorthy N., Arunachalam K. 2016. Micro and mechanical behaviour of treated used foundry sand concrete, Constr. Build. Mater. 123, 184–190.
  • 95. Neolaka Y.A.B., Supriyanto G., Kusuma H.S. 2018. Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution, J. Environ. Chem. Eng. 6, 3436–3443. https://doi.org/10.1016/j.jece.2018.04.053.
  • 96. Mokif L.A., Faisal A.A.H. 2023. Laboratory Studies into Tetracycline Removal from Aqueous Solutions by Beads of Calcium-Iron Oxide Nanoparticles, Water, Air, Soil Pollut. 234, 1–19.
  • 97. Patel H. 2019. Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci. 9, 45.
  • 98. Mohammed M.A.A., Khleel N.A.A., Szabó N.P., Szűcs P. 2022. Development of Artificial intelligence model with aid of statistical methods for simulation of water quality indices in north Khartoum area , Sudan, Res. Sq.
  • 99. Djurovic N., Domazet M., Stricevic R., Pocuca V., Spalevic V., Pivic R., Gregoric E., Domazet U. 2015. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS, Sci. World J. 2015. https://doi.org/10.1155/2015/742138.
  • 100. Kulisz M., Kujawska J., Przysucha B., Cel W. 2021. Forecasting water quality index in groundwater using artificial neural network, Energies. 14. https://doi.org/10.3390/en14185875.
  • 101. Al-Waeli L.K., Sahib J.H., Abbas H.A. 2022. ANNbased model to predict groundwater salinity: A case study of West Najaf-Kerbala region, Open Eng. 12, 120–128. https://doi.org/10.1515/eng-2022-0025.
  • 102. Ngoie S., Lunda J., Mbuyu A., Makenda G. 2018. Overview of Artificial Neural Networks Applications in Groundwater Studies, Int. Res. J. Eng. Technol., 3768–3773.
  • 103. Kheradpisheh Z., Talebi A., Rafati L., Ghaneian M.T., Ehrampoush M.H. 2015. Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran, Desert. 20, 65–71.
  • 104. Khaki M., Yusoff I., Islami N., Hussin N.H. 2016. Artificial neural network technique for modeling of groundwater level in Langat Basin, Malaysia, Sains Malaysiana. 45, 19–28.
  • 105. L.A. Krishan G, Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India, J. Earth Sci. Clim. Change. 06 (2015). https://doi.org/10.4172/2157-7617.1000274.
  • 106. Di Franco G., Santurro M. 2021. Machine learning, artificial neural networks and social research, Qual. Quant. 55, 1007–1025. https://doi.org/10.1007/s11135-020-01037-y.
  • 107. Ullah H., Khan I., Alsalman H., Islam S., Asif Zahoor Raja M., Shoaib M., Gumaei A., Fiza M., Ullah K., Mizanur Rahman S.M., Ayaz M., 2021. Levenberg-Marquardt Backpropagation for Numerical Treatment of Micropolar Flow in a Porous Channel with Mass Injection, Complexity. 2021. https://doi.org/10.1155/2021/5337589.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d23258b-c93d-4fb9-8643-014538fd16b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.