PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification models based on association rules for estimation of key process variables in nuclear power plant

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nuclear power plant process systems have developed great lyover the years. As a large amount of data is generated from Distributed Control Systems (DCS) with fast computational speed and large storage facilities, smart systems have taken over analysis of the process. These systems are built using data mining concepts to understand the various stable operating regimes of the processes, identify key performance factors, makes estimates and suggest operators to optimize the process. Association rule mining is a frequently used data-mining conceptin e-commerce for suggesting closely related and frequently bought products to customers. It also has a very wide application in industries such as bioinformatics, nuclear sciences, trading and marketing. This paper deals with application of these techniques for identification and estimation of key performance variables of a lubrication system designed for a 2.7 MW centrifugal pump used for reactor cooling in a typical 500MWe nuclear power plant. This paper dwells in detail on predictive model building using three models based on association rules for steady state estimation of key performance indicators (KPIs) of the process. The paper also dwells on evaluation of prediction models with various metrics and selection of best model.
Rocznik
Strony
315--330
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Bharatiya Nabhikiya Vidyut Nigam Limited (BHAVINI) , Kalpakkam, India
  • VELS Institute of Science,Technology and Advanced Studies (VISTAS), Chennai, India
  • VELS Institute of Science,Technology and Advanced Studies (VISTAS), Chennai, India
Bibliografia
  • [1] Dragan Vuksanović, Jelena Ugarak, and Davor Korčok. Industry 4.0: the Future Concepts and New Visions of Factory of the Future Development. In Proceedings of the International Scientific Conference - Sinteza 2016. Singidunum University, 2016.
  • [2] Saurabh Vaidya, Prashant Ambad, and Santosh Bhosle. Industry 4.0 - A Glimpse. Procedia Manufacturing, 20: 233-238, 2018.
  • [3] Ramos Sofia, Ana Brásio. Industrial processes monitoring methodologies. PhD thesis, Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra, 2015.
  • [4] Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven Soft Sensors in the proces industry. Computers & Chemical Engineering, 33 (4): 795-814, apr 2009.
  • [5] J. Cregan M. Flynn, D. Ritchie. Data mining techniques applied to power plant performance monitoring. In IFAC Proceedings Volumes (IFAC-Papers Online), volume Volume 38, Issue 1, pages 369-374, 2005.
  • [6] Juha Juselius. Advanced condition monitoring methods in thermal power plants. Master’s thesis, Lappeenranta University Of Technology LUT School of Energy Systems, 2018.
  • [7] Jian qiang Li, Cheng lin Niu, Ji zhen Liu, and Luan ying Zhang. Research and Application of Data Mining in Power Plant Process Control and Optimization. In Advances in Machine Learning and Cybernetics, pages 149-158. Springer Berlin Heidelberg, 2006.
  • [8] T. Ogilvie, E. Swidenbank, and B. W. Hogg. Use of data mining techniques in the performance monitoring and optimisation of a thermal power plant. In IEE Two-day Colloquium on Knowledge Discovery and Data Mining. IEE, 1998.
  • [9] Zhiqiang Ge, Zhihuan Song, Steven X. Ding, and Biao Huang. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access, 5: 20590-20616, 2017.
  • [10] S. Narasimhan and Rajendran. Application of Data Mining Techniques for Sensor Drift Analysis to Optimize Nuclear Power Plant Performance. International Journal of Innovative Technology and Exploring Engineering, 9 (1): 3087-3095, nov 2019.
  • [11] V. Rajendran. S. Narasimhan. Optimization of a Process System in Nuclear Power Plant- A Data Mining Approach. Grenze International Journal of Engineering and Technology, Special Issue, Grenze ID: 6.2.1, 2020.
  • [12] Jian Pei. Jiawei Han, Micheline Kamber. Data mining: concepts and techniques. Morgan Kaufmann Publishers, 2012.
  • [13] Wenmin Li, Jiawei Han, and Jian Pei. CMAR: accurate and efficient classification based on multiple class-association rules. In Proceedings 2001 IEEE International Conference on Data Mining. IEEE Comput. Soc, 2001.
  • [14] Xiaoxin Yin and Jiawei Han. CPAR: Classification based on Predictive Association Rules. In Proceedings of the 2003 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, may 2003.
  • [15] Coenen, F. LUCS-KDD implementations of CPR (Classification based on Predictive Association Rules).
  • [16] Hahsler M, Johnson I. Classification Based on Association Rules [R package arulesCBA version 1.2.0].
  • [17] Max Kuhn. Classification and Regression Training [R package caret version 6.0-86]. Comprehensive R Archive Network (CRAN), 2020 web page = https://cran.r-project.org/package=caret.
  • [18] Natacha Hainard Alexandre Tiberti Natalia Lisacek Frédérique Sanchez Jean-charles Müller Markus Robin, Xavier Turck. pROC : an open-source package for R and S + to analyzeand compare ROC curves.BMC Bioinformatics, Issue 12, 2011.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d18e410-3a3b-4951-a90d-e608867618b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.