PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation of lignites is inherently difficult. However, pre-heat treatment of coal is also known to make coal surfaces more hydrophobic possibly through removal of water entrapped in the structure of coal. In this context, the objective of this study was, therefore, to determine changes in the hydrophobicity of some lignites under moderately controlled heat treatment and correlate the flotation response of lignites in different salt solutions of NaCl, KCl, CaCl2, and MgCl2 without using any reagent. The results of flotation tests suggested that under the present test conditions, it was possible to float thermally pre-treated lignite samples of partially hydrophobic character in salt solutions in the absence of collector and frother. In addition, the effect of heat treatment on hydrophobicity, and in turn flotation was explained by a theoretical model based on extended DLVO interactions to quantify the effects of both heat treatment and salt concentration on bubble-particle interactions. The results of theoretical modeling suggested that the removal of hydrogen containing groups from coal surfaces significantly contribute to the electrical double layer and hydrophobic forces that govern the magnitude of energetic barrier and also the extent of bubble-particle attachment.
Słowa kluczowe
Rocznik
Strony
1070--1082
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Istanbul University
autor
  • Istanbul University
autor
  • Istanbul Technical University
autor
  • Istanbul Technical University
autor
  • Onsekiz Mart University
autor
  • Istanbul Technical University
Bibliografia
  • APLAN, F.F., 1976. Coal Flotation. Flotation: A.M. Gaudin Memorial Volume. 1235–1264.
  • ARIF, M., JONES, F., BARIFCANI, A., IGLAUER, S., 2017. Influence of surface chemistry on interfacial properties of low to high rank coal seams. Fuel. 194, 211-221.
  • ASTM D3174-73, Standard Test Method for Ash in the analysis sample of coal and coke from coal.
  • CEBECI, C., SARIOGLU, M., KAHRIMAN, A., 2002. Determination of various flocculants’ performance in flocculation of lignite waste pulps. Asian Journal of Chemistry. 14(1), 413-419.
  • CELIK, M.S., SOMASUNDARAN, P., 1986. The effect of multivalent ions on the flotation of coal. Separation Science and Technology. 21, 393-402.
  • CELIK, M.S. and SEYHAN, K., 1995. Effect of heat treatment on the flotation of Turkish lignites. Coal Preparation. 16, 65-79.
  • CELIK, M.S., YILDIRIM, I., 2000. A new physical process for desulfurization of low-rank coals. Fuel. 79, 1665-1669.
  • CINAR, M., 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel. 90(10), 1300-1304.
  • CRAIG, V.S.J., NINHAM, B.W. and PASHLEY, R.M., 1993. The effect of electrolytes on bubble coalescence in water. The Journal of Physical Chemistry. 97, 39, 10192-10197.
  • ELMAHDY, A.M, MIRNEZAMI, M., FINCH, J.A., 2008. Zeta potential of air bubbles in presence of frothers. International Journal of Mineral Processing. 89(1-4), 40-43.
  • FUERSTENAU, D.W., 1988. Assessing the wettability and degree of oxidation of coal by film flotation. Energy and Fuels. 2, 237-241.
  • GUVEN, O., CELIK, M.S., DRELICH, J., 2015. Flotation of methylated roughened glass particles and analysis of particlebubble energy barrier. Minerals Engineering. 79, 125-132.
  • HARVEY, P.A., NGUYEN, A.V., EVANS, G.M., 2002. Influence of electrical double-layer interaction on coal flotation. Journal of Colloid and Interface Science. 250(2), 337–343.
  • JIN, R., YE, Y., MILLER, J.D., & HU, J.S. 1987. Characterization of coal hydrophobıcıty by contact angle, bubble attachment time and FTIR spectroscopy. Society of Mining Engineers of AIME. Littleton, Co, USA: Soc of Mining Engineers of AIME.
  • KLASSEN, V.I., MOKROUSOV, V.A., 1963. An Introduction to the Theory of Flotation. Butterworths, London.
  • KURNIAWAN, A.U., OZDEMIR, O., NGUYEN, A.V., OFORI, P., FIRTH, B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. International Journal of Mineral Processing. 98(3–4), 137–144.
  • LASKOWSKI, J. S., CASTRO, S., RAMOS, O. 2013. Effect of seawater main components on frothability in the flotation of cu-mo sulfide ore. Physicochemical Problems in Mineral Processing. 50(1), 17-29.
  • LASKOWSKI, J. S., Z. XU, and R. H. YOON. 1991. Energy barrier in particle-to-bubble attachment and its effect on flotation kinetics. XVIIth International Mineral Processing Congress, Dresden, Germany, Sept. 23-28, 1991.
  • LI C., SOMASUNDARAN P., 1991. Reversal of bubble charge in multivalent inorganic salt solutions-effect of magnesium. Journal of Colloid and Interface Science. 146(1), 215–218.
  • LI, C., SOMASUNDARAN P., 1993. Role of electrical double layer forces and hydrophobicity in coal flotation in sodium chloride solutions. Energy Fuels. 7(2), 244–248.
  • NIU, C., XIA, W. and XIE, G., 2017. Effect of low-temperature pyrolysis on surface properties of sub-bituminous coal sample and its relationship to flotation response. Fuel. 208, 469-475.
  • OZDEMIR, O., TARAN E., HAMPTON M.A., KARAKASHEV S.I., NGUYEN A.V., 2009. Surface chemistry aspects of coal flotation in bore water. International Journal of Mineral Processing. 92(3-4), 177–183.
  • OZDEMIR, O., 2013. Specific ion effect of chloride salts on collectorless flotation of coal. Physicochemical Problems of Mineral Processing. 49(2), 511-524.
  • QUINN, J.J., SOVECHLES, J.M., FINCH, J.A., WATERS, K.E., 2014. Critical coalescence concentrations of inorganic salt solutions. Minerals Engineering, 58, 1-6.
  • PAZHIANUR, R.D. and YOON, R.H., 2003. Model for the origin of hydrophobic force. Minerals and Metallurgical Processing. 20(4), 178-184.
  • PUGH, R.J., WEISSENBORN, P., PAULSON, O., 1997. Flotation in inorganic electrolytes; the relationship between recovery of hydrophobic particles, surface tension, bubble coalescence and gas solubility. International Journal of Mineral Processing. 51(1–4), 125–138.
  • SURESH, L., and WALZ, J.Y., 1996. Effect of surface roughness on the interaction energy between a colloidal sphere and a flat plate. Journal of Colloid and Interface Science. 183(1), 199-213.
  • WALZ, J.Y., SURESH, L., and PIECH, M., 1999. The effect of nanoscale roughness on long range interaction forces. Journal of Nanoparticle Research. 1(1), 99-113.
  • XIA, W., LI, Y., 2016. The role of roughness change on wettability of taixi anthracite coal surface before and after the heating process. Energy Fuels. 30(1), 281-284.
  • XIA, W., YANG, J. and LIANG, C., 2013. Effect of microwave pretreatment on oxidized coal flotation. Powder Technology. 233, 186-189.
  • YE, Y., JIN, R., MILLER, J.D., 1988. Thermal treatment of low-rank coal and its relationship to flotation response. International Journal of Coal Preparation and Utilization. 6, 1-6.
  • YOON, R. H., 1982. Flotation of coal using micro-bubbles and inorganic salts. Mining Congress Journal. 68, 76-80.
  • YOON, R.H., SABEY, J.B., 1989. Coal flotation in inorganic salt solution. Interfacial Phenomena in Coal Technology. G. D. Botsaris and Y. M. Glazman. New York, Marcel Dekker: 87–114.
  • YOON, R. H., and MAO, L.Q., 1996. Application of extended DLVO theory. 4. Derivation of flotation rate equation from first principles. Journal of Colloid and Interface Science. 181(2), 613-626.
  • YU, Y. 2017. The flotation characteristics of lignite after low-temperature pyrolysis pretreatment. Petroleum Science and Engineering. 2(2), 46-49.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d17b2f4-d29f-4ba6-8360-2105f9950e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.