PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration electrospinning of Polyamide-66/Multiwall Carbon Nanotube Nanocomposite: introducing electrically conductive, ultraviolet blocking and antibacterial properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fabrication of electro-conductive fiber is a novel process. Nanocomposites of multiwall carbon nanotube/polyamide66 were produced by electrospinning with different amounts of multiwall carbon nanotube. Field emission scanning electron microscope and Fourier transform infrared spectroscopy of samples proved the existence of multiwall carbon nanotube distribution in polyamide 66 nanofibers. Results showed that electro conductivity of electrospun multiwall carbon nanotube/polyamide 66 nano fiber has increased in comparison with electrospun polyamide 66. Moreover, UV blocking of samples was investigated which has shown that using multiwall carbon nanotube in polyamide 66 increases UV blocking of fibers. Furthermore, anti-bacterial activity of nanocomposite showed that these nanocomposites have antibacterial property against both Staphylococcus Aureus and Escherichia Coli bacteria according to AATCC test method.
Rocznik
Strony
56--60
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Islamic Azad University, Department of Textile Engineering, Yazd Branch, Yazd, Iran
autor
  • Amirkabir University of Technology, Textile Engineering Department, Textile Research and Excellence Centers, Tehran, Iran
  • Islamic Azad University, Department of Design and Clothing, Yazd Branch, Yazd, Iran
autor
  • Islamic Azad University, Department of Textile Engineering, Yazd Branch, Yazd, Iran
Bibliografia
  • 1. Cai, J.Y. & Min, J. et al. (2014). Enhanced mechanical performance of CNT/Polymer composite yarns by γ-irradiation. Fibers Polym. 15(2), 322–325. DOI: 10.1007/s12221-014-0322-9.
  • 2. Chien, A-T. & Cho, S. et al. (2014). Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer 55(26), 6896–6905. DOI: http://dx.doi.org/10.1016/j.polymer.2014.10.064.
  • 3. Dallmeyer, I. & Lin, L.T. et al. (2014). Preparation and Characterization of Interconnected, Kraft Lignin-Based Carbon Fibrous Materials by Electrospinning. Macromol. Mater. Engine. 299(5), 540–551. DOI: 10.1002/mame.201300148.
  • 4. Hunley, M.T. & Pötschke, P. et al. (2009). Melt Dispersion and Electrospinning of Non-Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromol. Rapid Commun. 30(24), 2102–2106. DOI: 10.1002/marc.200900393.
  • 5. Inagaki, M. & Yang, Y. et al. (2012). Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 24(19), 2547–2566. DOI: 10.1002/adma.201104940.
  • 6. Karimi, L. & Zohoori, S. et al. (2014). Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mater. 29(5), 380–385. DOI: http://dx.doi.org/10.1016/S1872-5805(14)60144-X.
  • 7. Ketpang, K. & Park, J.S. (2010). Electrospinning PVDF/PPy/MWCNTs conducting composites. Synth. Metals 160(15–16), 1603–1608. DOI: http://dx.doi.org/10.1016/j.synthmet.2010.05.022.
  • 8. Kim, K. & Shim, H. et al. (2016). Fiber formation model for electrospinning. II. Stable jet voltage. Fibers Polym. 17(10), 1634–1640. DOI: 10.1007/s12221-016-6035-5.
  • 9. Kimmer, D. & Slobodian, P. et al. (2009). Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polym. Sci. 111(6), 2711–2714. DOI: 10.1002/app.29238.
  • 10. Lee, C.J. & Salehiyan, R. et al. (2016). Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites. Polymer 84, 198–208. DOI: http://dx.doi.org/10.1016/j.polymer.2015.12.055.
  • 11. Liu, C.K. & Lai, K. et al. (2009). Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym. Int. 58(12), 1341–1349. DOI: 10.1002/pi.2669.
  • 12. Martin, J.R. & Borchardt, L. et al. (2013). Titanium Carbide and Carbide-Derived Carbon Composite Nanofibers by Electrospinning of Ti-Resin Precursor. Chem. Ingen.Technik 85(11), 1742–1748. DOI: 10.1002/cite.201300057.
  • 13. Mirjalili, M. & Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 6(3), 207–213. DOI: 10.1007/s40097-016-0189-y.
  • 14. Mohiuddin, M. & Van Hoa, S. (2011). Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale Res. Lett. 6(1), 1–5. DOI: 10.1186/1556-276x-6-419.
  • 15. Montazer, M. & Behzadnia, A. et al. (2011). Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J. Photoch. Photob. B: Biology 103(3), 207–214. DOI: http://dx.doi.org/10.1016/j.jphotobiol.2011.03.009.
  • 16. Oh, G.Y. & Ju, Y.W. et al. (2008). Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci. Tot. Environ. 393(2–3), 341–347. DOI: http://dx.doi.org/10.1016/j.scitotenv.2008.01.005.
  • 17. Pan, C., Ge, L.Q. et al. (2007). Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Comp. Sci. Technol. 67(15–16), 3271-3277. DOI: http://dx.doi.org/10.1016/j.compscitech.2007.03.036.
  • 18. Tian, M. & Hu, X. et al. (2016). Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 377, 141–148. DOI: http://dx.doi.org/10.1016/j.apsusc.2016.03.183.
  • 19. Wu, X.F. & Rahman, A. et al. (2013). Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 129(3), 1383–1393. DOI: 10.1002/app.38838.
  • 20. Wu, Z. & Meng, L. et al. (2014). Chemically grafting carbon nanotubes onto carbon fibers by poly(acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites. Fib. Polym. 15(3), 659–663. DOI: 10.1007/s12221-014-0659-0.
  • 21. Yang, T. & Wu, D. et al. (2011). Electrospinning of polylactide and its composites with carbon nanotubes. Polym. Compos. 32(8), 1280–1288. DOI: 10.1002/pc.21149.
  • 22. Yousef, A. & Brooks, R.M. et al. (2015). Cu0-decorated, carbon-doped rutile TiO2 nanofibers via one step electrospinning: Effective photocatalyst for azo dyes degradation under solar light. Chem. Engine. Proces.: Process Intensif. 95, 202–207. DOI: http://dx.doi.org/10.1016/j.cep.2015.06.015.
  • 23. Zohoori, S. & Karimi, L. et al. (2014). A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. J. Ind. Engine. Chem. 20(5), 2934–2938. DOI: http://dx.doi.org/10.1016/j.jiec.2013.10.062.
  • 24. Arboleda-Clemente, L. & Ares-Pernas, A. et al. (2016). Influence of polyamide ratio on the CNT dispersion in polyamide 66/6 blends by dilution of PA66 or PA6-MWCNT masterbatches. Synth. Metals 221, 134–141. DOI: https://doi.org/10.1016/j.synthmet.2016.07.030.
  • 25. Hanaa, M. Hegab, A., El Mekawy, Zou, L., Mulcahy, D., Saint, C.P. & Ginic-Markovic, M. (2016). The Controversial Antibacterial Activity of Graphene-Based Materials. Carbon. 105, 362–76. DOI: https://doi.org/10.1016/j.carbon.2016.04.046.
  • 26. Shaobin, L., Tingying, H. Zeng, Mario Hofmann, Ehdi Burcombe, Jun Wei, Rongrong Jiang, Jing Kong & Yuan Chen. (2011). Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 5, 6971–80. DOI: 10.1021/nn202451x.
  • 27. Yvonne Ligaya F. Musico, Catherine M. Santos, Maria Lourdes P. Dalida, Debora F. Rodrigues. (2014). Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal, ACS Sust. Chem. & Engine. 2, 1559–65. DOI: 10.1021/sc500044p.
  • 28. Virender K. Sharma, Thomas J. McDonald, Hyunook Kim, Vijayendra K. Garg. (2015). Magnetic Graphene–Carbon Nanotube Iron Nanocomposites as Adsorbents and Antibacterial Agents for Water Purification. Adv. Coll. Inter. Sci. 225, 229–40. DOI: https://doi.org/10.1016/j.cis.2015.10.006.
  • 29. Tengfei Tian, Xiaoze Shi, Liang Cheng, Yinchan Luo, Ziliang Dong, Hua Gong, Ligeng Xu, Zengtao Zhong, Rui Peng, and Zhuang Liu. (2014). Graphene-Based Nanocomposite as an Effective, Multifunctional, and Recyclable Antibacterial Agent. ACS Appl. Mater. & Inter. 6, 8542–48. DOI: 10.1021/am5022914.
  • 30. Oya, A., Yoshida, S., Alcaniz-Monge, J. & Linares-Solano, A. (1996). Preparation and Properties of an Antibacterial Activated Carbon Fiber Containing Mesopores. Carbon 34, 53–57. DOI: https://doi.org/10.1016/0008-6223(95)00134-4.
  • 31. Karthikeyan Krishnamoorthy, Murugan Veerapandian, Ling-He Zhang, Kyusik Yun, and Sang Jae Kim. (2012). Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria Via Lipid Peroxidation. J. Phys. Chem. C. 116, 17280–87. DOI: 10.1021/jp3047054.
  • 32. Yongbin Zhang, Syed F. Ali, Enkeleda Dervishi, Yang Xu, Zhongrui Li, Daniel Casciano, and Alexandru S. Biris. (2010). Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived Pc12 Cells. ACS Nano. 4, 3181–3186. DOI: 10.1021/nn1007176.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d163fb4-92e4-4e9b-955b-288165737a18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.