Identyfikatory
Warianty tytułu
Klasyfikatory w uogólnionych aproksymacyjnych przestrzeniach pokryć
Języki publikacji
Abstrakty
Emerging intelligent information systems are pushing existing mathematical foundations into new directions. Generalized covering approximation spaces present abstract data model useful in development of new data analysis methods. The paper introduces construction of rough classifiers in generalized covering approximation spaces. The main idea comes from generation of rough coverings in feature space and calculation of rough covering descriptor. Data are divided into data blocks and each data block statistic and bounding block is calculated . Feature space is divided into feature blocks. For each data bounding block, its inclusion into feature block is calculated and rough covering descriptor is created. Rough covering descriptor is embedded in the generalized covering approximation spaces with standard, fuzzy and probabilistic coverings giving robust theoretical framework in design, implementation and application of classification algorithms.
W pracy przedstawiono nowy sposób konstrukcji klasyfikatorów w uogólnionych aproksymacyjnych przestrzeniach pokryć, definiowanych jako przestrzenie aproksymacyjne zawierające przestrzeń obiektów, pokrycia w tej przestrzeni, oraz pokrycia w przestrzeni atrybutów wraz z zdefiniowaną funkcją zawierania się zbiorów zastosowaną dla pokryć.
Czasopismo
Rocznik
Tom
Strony
43--58
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
Bibliografia
- [1] Sai Y. Liu G.L. A comparison of two types of rough sets induced by coverings. Int. J. Approx. Reason, 50:521–528, 2009.
- [2] Zhu W. Relationship between generalized rough sets based on binary relation and covering. Information Sciences, 179:210–225, 2009.
- [3] Yao B. Yao Y. Covering based rough set approximations. Information Sciences, 200:91–107, 2012. [
- [4] Gomez J. Restrepo M., Cornelis C. Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. International Journal of Approximate Reasoning, 55:469–485, 2014.
- [5] Zhao Z. On some types of covering rough sets from topological points of view. International Journal of Approximate Reasoning, 68:1–14, 2016.
- [6] Liwen Ma. Two fuzzy covering rough set models and their generalizations over fuzzy lattices. Fuzzy Sets and Systems, pages –, 2015.
- [7] Skowron A. Pawlak Z. Rough sets: some extensions. In Information Sciences 177, pages 28–40, 2007.
- [8] Stepaniuk J. Malyszko D. Granular multilevel rough entropy thresholding in 2D domain. 16th International Conference Intelligent Information Systems, Zakopane, Poland, pages 151–160, 2008.
- [9] Stepaniuk J. Malyszko D. Adaptive rough entropy clustering algorithms in image segmentation. Fundamenta Informaticae, 98(2-3):199–231, 2010.
- [10] Stepaniuk J. Malyszko D. Adaptive multilevel rough entropy evolutionary thresholding. Information Sciences, 180(7):1138–1158, 2010.
- [11] Peters J. Pal S. K. Rough Fuzzy Image Analysis: Foundations and Methodologies. CRC Press Inc, 2010.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d148466-6dab-4050-b282-928b18b7270d