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Abstract: Emerging intelligent information systems are pushing existing mathematical foun-
dations into new directions. Generalized covering approximation spaces present abstract data
model useful in development of new data analysis methods. The paper introduces construc-
tion of rough classifiers in generalized covering approximation spaces. The main idea comes
from generation of rough coverings in feature space and calculation of rough covering de-
scriptor. Data are divided into data blocks and each data block statistic and bounding block
is calculated . Feature space is divided into feature blocks. For each data bounding block, its
inclusion into feature block is calculated and rough covering descriptor is created. Rough
covering descriptor is embedded in the generalized covering approximation spaces with
standard, fuzzy and probabilistic coverings giving robust theoretical framework in design,
implementation and application of classification algorithms.

Keywords: Generalized approximation spaces, covering approximation spaces, rough cov-
ering approximation spaces

1. Introduction

Modern computer systems are shifting into transformation to intelligent information
systems requiring extension of existing mathematical theories into new directions.
Rough set theory presents framework designed for handling imprecise, vague, in-
complete, uncertain information. A fundamental methodology of the theory of rough
sets has been grounded by means of division of universe object into classes defined
by an equivalence relation. In order to extend this point of view, many research has
been focused on presenting more generalized data models. Classical rough set the-
ory based equivalence relations have been replaced by more general binary relations,
coverings, fuzzy sets, neighborhood systems and general approximation framework.

Recently, the concept of neighborhood has been introduced to define and study
different types of neighborhood-based covering rough sets. The covering-based rough
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sets is one of the most important extensions of the classical Pawlak rough sets. In the
covering-based rough set theory, various kinds of rough sets were already defined
and studied in the literature. The relation among different covering approximation
operators has been presented in [1], [2]. In [3] a framework for the study of cover-
ing approximation operators by the element based, the granule based and the sub-
system based definitions. Approximation operators in covering based rough sets are
presented in [4]. Topological properties of covering rough sets are investigated in [5].
Fuzzy coverings rough sets introduced in [6] are linking covering rough set theory
and fuzzy rough set theory.

The generalized rough sets in neighborhood system is another important exten-
sion of the classical Pawlak rough sets. Rough set extensions have been presented in
[7]. Rough feature covering model creates coverings of universe in the generalized
approximation spaces. Coverings create neighborhoods of objects, inclusion function
is based upon inclusion of coverings.

Rough Extended Framework presented in [8], [9], [10] extensively developed
method of data analysis based upon data structure inferred from metric relations in
rough, fuzzy and probabilistic approach. The theory of rough sets and fuzzy sets
have applied in many image analysis algorithms as described in [11] and can also be
combined with various computational intelligence techniques.

Rough covering model embeds into generalized covering approximation spaces
with coverings creating neighborhood system, inclusion function describes degree
of inclusion for coverings. Established generalized approximation space model gives
good foundations for data analysis. Feature coverings are based upon clustering and
thresholding of feature space. Rough covering model incorporates standard, fuzzy
and probabilistic data model, giving interoperability. The main contribution of the
paper is presentation of precise framework for creation rough covering descriptor
and algorithm for data classification that is embedded in generalized covering ap-
proximation spaces.

This paper has been structured in the following way. In Section 2. the introduc-
tory information about rough sets, approximation spaces and generalized covering
approximation spaces has been presented. In Section 3. the covering types of general-
ized covering approximation spaces have been described. Construction of classifiers
based upon rough descriptors in generalized approximation spaces is given in Section
4.. Next, concluding remarks and future research are given.
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2. Generalized covering approximation spaces

In this Section, definition of generalized deep feature covering approximation space
is given with introduction of inclusion function for this space. Next approximation
neighborhood systems in these spaces are introduced that form rough approximations
of feature coverings.

Definition 1 Universe consists of objects, further referred to as universe objects.
Universe object consists of vector of n-dimensional points by default in Rn space.

Universe object is the vector of m points, p = (p1, . . . , pm). Each point pi =
(x1, . . . ,xn) is described by n attributes or features from attribute set A = {a1, . . . ,an}.
In case of the number of points of the universe object equal 1, the classical definition
of the universe is obtained. Each attribute ai has domain of possible values, forming
real interval defined as dai =(minai ,maxai). In that way, the concept of attribute space
is introduced

Definition 2 Attribute space or feature space V = (dai× ·· ·× dan) is the space of
all possible feature values for each attribute, it means dai = (minai ,maxai). Given the
universe U, attribute space for this universe will be denoted as V(U).

Corollary 1. Both elements of the universe U and attribute space V(U) consist of
n-dimensional points so they have the same domain and may be compared.

Universe objects as the sets of n-dimensional points are divided into data blocks
forming data covering. The same applied to attribute space V(U) as the sets of feature
vectors divided into feature blocks forming feature coverings.

Definition 3 A data block N = {p1, . . . , pb} is a set of n-dimensional points of uni-
verse object. The order of a data block is the number of points of data block.

Definition 4 A feature block is a set of n-dimensional points. The order of a feature
block is the number of points of feature block including infinite case. Feature blocks of
universe objects are denoted as f={p1, . . . , pb} and feature blocks of attribute space
are denoted as F={p1, . . . , pb}.

Definition 5 Selection of subsets of universe creates universe covering and selection
of subsets of universe object creates universe object covering.

Theorem 1. Each covering (subsets) of universe object of n-dimensional points de-
fines feature blocks f.
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As universe objects consists of n-dimensional points, selecting some number of
n-dimensional points fulfills the definition of feature block.

Theorem 2. Each covering (subsets) of feature space V(U) defines feature blocks F.

As feature space consists of n-dimensional points, selecting some number of
n-dimensional points fulfills the definition of feature block.

Definition 6 A feature block F = {p1, . . . , pm} has min, max and avg values deter-
mined as

a(F) = avg(p1, . . . , pm)

m(F) = min(p1, . . . , pm)

M(F) = max(p1, . . . , pm)

where values avg, min, max are calculated for each attribute over all n-dimensional
points forming feature block.

Definition 7 A hyperbox defines region in n-dimensional space determined by means
two n-dimensional points, formally defined as the Cartesian product of intervals In
an n-dimensional space of real numbers Rn, let a,b ∈ Rn be given points such that
a < b, i.e. ∀1≤i≤n ai < bi. A hyperbox H=(a,b) is the set of points satisfying condition

H ⊂ Rn,x = {x1, . . . ,xn},x ∈ H ⇐⇒ ∀1≤i≤n ai < xi < bi

where x j is j-th feature of x.

Theorem 3. Each feature block F defines H hyperbox in Rn by assuming

H = (m(F),M(F))

A direct consequence of theorem 1 is the fact

Corollary 2. Each data covering defines H hyperboxes in Rn.

A consequence of theorem 2 is the fact

Corollary 3. Each feature covering defines H hyperboxes in Rn.

Corollary 4. Feature blocks F of attribute space form some kind of universe objects
with accordance to definition 1.
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From corollary 4 results that feature blocks F can be compared to universe ob-
jects.

Definition 8 Hyperbox H = (a,b) has min, max and avg values determined as

a(H) = (a+b)/2

m(H) = a

M(H) = b

In that way, that comparison between data blocks and feature blocks is pos-
sible on the base of inclusion of their respective hyperboxes. Selection of similar
indiscernible objects creates elementary sets that describe our knowledge about the
universe. Elementary sets are called precise sets. All other sets are considered to be
rough, imprecise, vague. An information system IS = (U,A) consists of objects de-
scribed by attributes. Attribute ai is defined as a function ai : U → Vai where Vai is
a set of attribute values. The same applies to extended definition of universe objects
from definition 1. Information system with objects divided into classes by reflexive,
symmetric and transitive equivalence R on U is called an approximation space. Lower
and upper approximations of any subset X of U are defined as two sets completely
contained or partially contained in the equivalence classes. This approach have been
generalized by extending equivalence relations to tolerance relations, similarity rela-
tions, binary relations leading into formulation of the concept of Generalized approx-
imation spaces.

Definition 9 A generalized approximation space is a tuple GAS = (U, N, υ) with N
is a neighborhood function defined on U with values in the powerset P(U) of U. The
overlap function υ is defined on the Cartesian product P(U)×P(U) with values in
the interval [0, 1] measuring the degree of overlap of sets.

The lower GAS∗ and upper GAS∗ approximation operations can be defined in a
GAS by

GAS∗(X) = {x ∈U : υ(N(x),X) = 1},

GAS∗(X) = {x ∈U : υ(N(x),X)> 0}.

Generalized approximation spaces present environments with specialized rough
set models applied such as similarity based rough set model with reflexive neigh-
borhood function and variable precision model with different thresholds definition in
overlap functions.
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Definition 10 Let C be a family of nonempty subsets of U creating a covering of U.
The ordered pair CAS = (C , U) is called a covering approximation space.

Definition 11 Let every universe object x of U has a family of nonempty subsets of
x creating a covering of x. The ordered pair DAS = (D , U) is called a deep covering
approximation space.

Starting from covering approximation spaces and defining more specialized neigh-
borhoods with overlap function we obtain the following definitions.

Neighborhood system NS with two distinct coverings L, U for each universe
object is called approximation neighborhood system.

Definition 12 Let C be a family of nonempty subsets of attribute feature space V(U)
associated with U creating a covering of U. The ordered pair CAS = (C ,V(U)) is
called a feature covering approximation space.

Definition 13 Given covering approximation space CAS, approximation neighbor-
hood system NS assigns for each object x two coverings L, U containing that object
NS = {L,U ∈ C : x ∈ L,U}

Approximation neighborhood system RS with two distinct coverings L, U for
each universe object satisfying condition L⊂U is called rough approximation neigh-
borhood system RS.

Definition 14 In covering approximation space CAS, rough approximation neigh-
borhood system RS(x) = {L,U ∈ C : x ∈ L,U} defines two coverings L, U containing
x, satisfying L⊂U.

Definition 15 A generalized covering approximation space is a system GCS = (U,
C , RS, υ) where RS is a rough approximation neighborhood system defined on U with
covering C , and υ is the overlap function measuring inclusion of coverings from C .

In order to apply coverings to universe objects the following notion of general-
ized deep covering approximation space has been introduced.

Definition 16 A generalized deep covering approximation space is a system GDS
= (U, D , RS, υ) where RS is a rough approximation neighborhood system defined
on universe objects of U with covering D , and υ is the overlap function measuring
inclusion of coverings from D .
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In order to embed into covering approximation spaces additional coverings of
feature space the notion of generalized feature covering approximation space has
been given.

Definition 17 A generalized feature covering approximation space is a system GFS
= (U, C , F , RS, υ) where RS is a rough approximation neighborhood system defined
on U with covering C , covering of feature space F and υ is the overlap function
measuring inclusion of coverings from C and F .

Generalized feature approximation spaces have coverings of universe and cov-
erings of feature space. When coverings of universe are replaced by coverings of
universe objects the following definition of generalized deep feature covering ap-
proximation space is obtained.

Definition 18 A generalized deep feature covering approximation space is a system
GFDS = (U, D , F , RS, υ) where RS is a rough approximation neighborhood system
defined on universe objects U with coverings D of universe objects, covering F of
feature space and υ is the overlap function measuring inclusion of two coverings
from D and F .

Definition 19 Inclusion function in generalized covering approximation spaces has
been defined in the way presented below

The degree of feature hyperbox inclusion represented by feature overlap func-
tion is defined as

v(Hi,H j) =


1 if a(Hi) ∈ H j

0.5 if Hi∩H j 6= /0

0 otherwise

with a(Hi) representing average value for hyperbox Hi. This inclusion function is of
general purpose type and finds similarity for data represented as multidimensional
hyperboxes.

The degree of feature blocks inclusion represented by feature overlap function
is defined as

v(Fi,Fj) =


1 if a(Fi) ∈ Fj

0.5 if Fi∩Fj 6= /0

0 otherwise
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with a(Fi) representing average value for feature block Fi. This type of inclusion
function leads to finding feature block similarity. Given feature block Fi the set of
feature blocks similar to Fi can be determined.

The degree of data blocks and feature blocks inclusion represented by overlap
function is defined as

v(Ni,Fj) = v(Hi,Fj) =


1 if a(Ni) ∈ Fj

0.5 if Hi∩Fj 6= /0

0 otherwise

with a(Ni) representing average value for data block Ni. Feature blocks Fi and data
blocks Ni represent some kind of universe objects as given in corollary 4, 1 and may
be compared by inclusion function. The inclusion v(Ni,Fj) gives information which
feature blocks are similar to given data blocks.

The degree of feature blocks and data blocks inclusion represented by overlap
function is defined as

v(Fi,N j) = v(Fi,H j) =


1 if a(Fi) ∈ H j

0.5 if Hi∩N j 6= /0

0 otherwise

with a(Fi) representing average value for feature block Fi. Feature blocks Fi and data
blocks Ni represent some kind of universe objects as given in corollary 4, 1 and may
be compared by inclusion function. The inclusion v(Fi,N j) gives information which
data blocks are similar to given feature blocks.

The degree of data blocks inclusion represented by overlap function is defined
as

v(Ni,N j) = v(Hi,H j) =


1 if a(Ni) ∈ H j

0.5 if Hi∩H j 6= /0

0 otherwise

with a(Ni) representing average value for data block Ni. This type of inclusion func-
tion leads to finding data block similarity. Given data block Ni the set of data blocks
similar to Ni can be determined.

In generalized deep covering approximation spaces, existence of universe ob-
jects coverings and feature coverings gives possibility of defining two additional
rough approximation neighborhood systems.
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Approximation neighborhood system FS assigns two distinct feature coverings
L, U for each universe objects coverings satisfying condition L ⊂U is called rough
approximation neighborhood system FS.

Definition 20 Approximation neighborhood system FS that assigns two distinct uni-
verse objects coverings L, U for each feature coverings is called feature approxima-
tion neighborhood system FS.

Definition 21 Approximation neighborhood system FS that assigns two distinct uni-
verse objects coverings L, U for each feature coverings satisfying condition L⊂U is
called rough feature approximation neighborhood system FS.

The concept of rough feature approximation neighborhood system has been de-
fined and applied into generalized deep covering approximation spaces during con-
struction of rough classifier framework. In the introduced rough extended model the
universe with data represented by universe objects, is divided into data blocks Ni

being covering of universe objects, features space is divided into feature blocks Fi.
By selecting inclusion function of type v(Ni,Fj) similarity of data blocks and feature
blocks is determined. For each data block Ni its inclusion v(Ni,Fj) in feature block Fj

is calculated. Each data block Ni is described by its hyperbox determined by means
of min, max feature block fi values. Image blocks that have feature mean value in the
Fi are assigned to its lower approximations, each feature block that is contained in the
(min, max) hyperbox are assigned to its upper approximation. Given selected feature
block Fj, lower and upper approximation of the feature block is defined as follows

G∗(Fj) = {Ni ∈U : υ(Ni,Fj) = 1},

G∗(Fj) = {Ni ∈U : υ(Ni,Fj)> 0}.

For the feature covering F = {F1, . . . ,Fs} the lower and upper approximaions are
defined as follows

G∗(F) =
⋃
Fi

{Ni ∈U : υ(Ni,Fj) = 1},

G∗(F) =
⋃
Fi

{Ni ∈U : υ(Ni,Fj)> 0}.

Introduced concept of generalized covering approximation spaces gives theoret-
ical foundations into creation of rough feature covering model described in the next
section. Metric spaces define the distance function that makes possible to compare
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objects, their similarity, relations, data structure and extract fuzzy and probabilistic
properties of the objects of the universe giving at the same time interoperability of
different data models.

3. Covering models for generalized covering approximation spaces

Covering models are created by means of data object relation to the selected set of
data centers. This reference set of data objects performs as the set of thresholds or the
set of cluster centers. In general data object are analyzed by means of their relation to
the selected number of cluster centers. Cluster centers are regarded as representatives
of the clusters.

Standard rough coverings - In standard setting data similarity is measured by
means metric. In rough clustering approaches, data points closest to the given cluster
center or sufficiently close relative to the selected threshold type, are assigned to this
cluster lower and upper approximations. The upper approximations are calculated
in the specific, dependent upon threshold type and measure way presented in the
subsequent paragraphs.

Fuzzy coverings - Fuzzy coverings are created by calculation of fuzzy member-
ship values for all data points of the universe to cluster centers. Assignment to fuzzy
coverings is based upon fuzzy membership values satisfying predefined conditions
based upon threshold values.

Probabilistic coverings - Probabilistic coverings are calculated by means of
probability distribution values within defined limits. In this type of covering proba-
bility distributions determines which data belongs to the coverings.

Neighborhood type - Neighborhoods are defined on the base of threshold value
for the given type of coverings. Threshold neighborhoods defined data objects that
are within given threshold value in the selected covering type, it means standard,
fuzzy and probabilistic. Difference neighborhood define similar objects on the base
their distance not higher to the nearest neighborhood.

Upper and lower neighborhoods - The upper and lower neighborhood approx-
imations are defined on the base neighborhood type and feature type. In this way,
lower approximation and upper approximation are defined independently.

In Fig. 1 three types of coverings have been presented. In Fig. 1 a standard
coverings based upon standard metric has been presented. In Fig. 1 b fuzzy coverings
based upon fuzzy membership values have been presented. In Fig. 1 c probabilistic
coverings are presented.
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a b c

Fig. 1. Three types of coverings, (a) standard coverings (b) fuzzy coverings, (c) probabilistic coverings

4. Rough covering classifiers in generalized covering approximation
spaces

Construction of rough classifier is presented for image data but the classifier is ap-
plicable to any numeric data. The image is denoted as I={p1, . . . , pm} representing
image pixels and at the same time forming universe object according to definition
1. Each pixel forms n-dimensional point as values of arbitrary n features denoted as
x={x1, . . . ,xn}. In this way, each image consists of m pixels described by numeric fea-
tures a. In next step, image blocks are defined as N={N1, . . . ,Nr} with K = {1 . . . ,r}
denoting the index set for image blocks and Ni ⊂ I with Ni = {p1, . . . , pr}. Image
blocks are created according to selected block creation strategy. Feature space is di-
vided into feature blocks F={F1, . . . ,Fs} with L = {1 . . . ,s} denoting the index set
for feature blocks. Further, for each image block Ni = {x1, . . . ,xr} its min, mean,
max values are calculated and hyperbox Hi is determined. Both image blocks and
feature blocks may be distinct (separable) or may overlap.

For feature blocks Fk, image blocks Ni that intersect the hyperbox Hi are assigned
to their upper approximations F∗(k) and their measures D∗(k) are increased by 1.0.
The feature block(s) Fk that contain(s) mean value of Ni, is considered to contain
entirely this image block so belongs to its lower approximation F∗(k) and its measure
D∗(k) is increased by 1.0. The degree of data blocks and feature blocks inclusion
represented by overlap function is defined as

v(Ni,Fj) = v(Hi,Fj) =


1 if a(Ni) ∈ Fj

0.5 if Hi∩Fj 6= /0

0 otherwise
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with a(Ni) representing mean value for data block Ni. In case of precisely selected
sets Ni and Fj only indices are used giving the following formula

d(i, j) =


1 if a(Ni) ∈ Fj

0.5 if Hi∩Fj 6= /0

0 otherwise

Lower approximation F∗(i) of feature block Fi consists of all image blocks N j

that inclusion d(i, j) is equal 1. The cardinality of all d(i, j) = 1 of feature block Fi is
denoted as D∗(i) and represents measure of the lower approximation

D∗(i) = card{k ∈ K : d(i,k) = 1}

Upper approximation F∗(i) of feature block Fi consists of all image blocks N j

that inclusion d(i, j) is greater than 0. The cardinality of all d(i, j) > 0 of feature
block Fi is denoted as D∗(i) and represents measure of the upper approximation

D∗(i) = card{k ∈ K : d(i,k)> 0}

Quality of approximation QA(i) describes quantitatively ratio between lower and
upper approximations of the feature block Fi

QA(i) = D∗(i)/D∗(i)

Roughness R(i) of feature block Fi gives measure of the uncertainty of the fea-
ture block

R(i) = 1−QA(i) = 1−D∗(i)/D∗(i)

As a whole, all R(i) roughness values describe rough descriptor of the universe
data.

R = ∑
i∈L

R(i) = ∑
i∈L

(1−QA(i))

Following presented procedure, the rough covering descriptor is calculated. The
algorithm for classification based upon introduced descriptor has been presented in
Algorithm 1. In the first step, all required data structures are prepared, it means input
data are divided into data blocks, feature space is divided into feature blocks. In the
second step, feature covering descriptor is calculated by assigning data blocks to
feature blocks and to their lower and upper approximations. After feature covering
descriptor has been calculated, the selected classifier is trained and tested.
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Algorithm 1: Rough covering classifier
Prepare data structures
Calculate feature covering descriptor
Perform learning phase of selected classifier algorithm
Perform classification

Data structure preparation

Data block creation - data objects can be divided in arbitrary way that is called block
creation strategy. For image data, data block creation strategy may consists in creation
overlapping or non-overlapping image blocks. For feature block creation, the strategy
described in previous Section may be applied with selection of cluster centers - cc,
neighborhood type - nt and covering type - ct.

Algorithm 2: Preparation of data structures
Input - I - image, S - block creation strategy, T - covering creation strategy
Output - N = {N1, . . . ,Nr}, F = {F1, . . . ,Fs}
Divide image into image blocks −> N
Divide feature space into feature blocks −> F

Rough covering descriptor

Feature covering descriptor is created as for each data block all feature blocks that
intersect bounding box of Fi and feature block that contains a(Ni) are found and
their lower and upper approximations measures are increased. The calculation of the
feature covering descriptor has been presented in Algorithm 2.

Perform classification

After rough covering descriptor has been calculated for all data, classification may
be performed by learning phase and testing phase. Rough covering descriptor may be
used for any classification framework suited to this purpose such as Support Vector
Machines, neural networks.
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Algorithm 3: Rough covering descriptor
Input - I - image, N −> data blocks, F −> feature blocks
Output - R - quality of approximations and roughness of feature blocks F
foreach Image block Ni in N do

Calculate hyperbox Hi and mean value a(Ni)
foreach feature block Fp in F which contains average value a(Ni) do

Increment D∗(p) of this feature block by 1.0

foreach feature block Fp in F contained in Hi do
Increment D∗(p) of this feature block by 1.0

Computational feasibility

The most difficult part in calculation of rough covering descriptor is finding of all
coverings embedded in hyperbox H. The routines Contains (Fi,Ni), Contains (Ni,Fi),
Get(Fi), Get(Ni) may be helpful in accomplishing this task. Get(Ni) returns all feature
blocks Fi that are intersected by hyperblock Hi. Get(Ni) works by calling for each
feature block Fi function Contains(Ni, Fi) returning information whether bounding
block of Ni intersects Fi. Function Get(Fi) returns all data blocks Ni that intersect
feature block Fi. In case of the number of feature blocks is not large, all the feature
blocks may be checked. When the number of feature blocks is large, for example
feature blocks are generated from 1000 cluster centers, the routine Get(Fi) is more
appropriate.

Conclusions and Future Research

In the paper, new algorithmic approach to construction of rough classifiers has been
presented by introduction of rough covering descriptors. Introduced rough covering
descriptor merges two different approaches in rough sets. Universe objects belong to
coverings as covering approximation spaces. In generalized covering approximation
spaces functionality of inclusion function has been given from generalized approx-
imation spaces. Granularity concept is employed by selection of different types of
data blocks and different feature blocks. Data descriptors are embedded in gener-
alized covering approximation space with coverings in feature space and inclusion
function that measures similarity of data blocks and feature coverings. Rough cover-
ing descriptors are based upon assignment of data blocks to feature blocks acting as
data descriptor. In this way created rough covering descriptor can be easily used in
classification frameworks such as Support Vector Machines framework, neural net-
works. Coverings in generalized covering approximation spaces include standard,
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fuzzy and probabilistic coverings giving robust theoretical framework in design, im-
plementation and application of classification algorithms.

References

[1] Sai Y. Liu G.L. A comparison of two types of rough sets induced by coverings.
Int. J. Approx. Reason, 50:521–528, 2009.

[2] Zhu W. Relationship between generalized rough sets based on binary relation
and covering. Information Sciences, 179:210–225, 2009.

[3] Yao B. Yao Y. Covering based rough set approximations. Information Sciences,
200:91–107, 2012.

[4] Gomez J. Restrepo M., Cornelis C. Duality, conjugacy and adjointness of ap-
proximation operators in covering-based rough sets. International Journal of
Approximate Reasoning, 55:469–485, 2014.

[5] Zhao Z. On some types of covering rough sets from topological points of view.
International Journal of Approximate Reasoning, 68:1–14, 2016.

[6] Liwen Ma. Two fuzzy covering rough set models and their generalizations over
fuzzy lattices. Fuzzy Sets and Systems, pages –, 2015.

[7] Skowron A. Pawlak Z. Rough sets: some extensions. In Information Sciences
177, pages 28–40, 2007.

[8] Stepaniuk J. Malyszko D. Granular multilevel rough entropy thresholding in
2D domain. 16th International Conference Intelligent Information Systems,
Zakopane, Poland, pages 151–160, 2008.

[9] Stepaniuk J. Malyszko D. Adaptive rough entropy clustering algorithms in im-
age segmentation. Fundamenta Informaticae, 98(2-3):199–231, 2010.

[10] Stepaniuk J. Malyszko D. Adaptive multilevel rough entropy evolutionary
thresholding. Information Sciences, 180(7):1138–1158, 2010.

[11] Peters J. Pal S. K. Rough Fuzzy Image Analysis: Foundations and Methodolo-
gies. CRC Press Inc, 2010.

57



Dariusz Małyszko

KLASYFIKATORY W UOGÓLNIONYCH
APROKSYMACYJNYCH PRZESTRZENIACH POKRYĆ

Streszczenie W pracy przedstawiono nowy sposób konstrukcji klasyfikatorów w uogól-
nionych aproksymacyjnych przestrzeniach pokryć, definiowanych jako przestrzenie aprok-
symacyjne zawierające przestrzeń obiektów, pokrycia w tej przestrzeni, oraz pokrycia w
przestrzeni atrybutów wraz z zdefiniowaną funkcją zawierania się zbiorów zastosowaną dla
pokryć.

Słowa kluczowe: przestrzenie aproksymacyjne, przestrzenie pokryć, przybliżone przestrze-
nie aproksymacyjne
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