PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An uncertainty principle for the windowed Bochner-Fourier transform with the complex-valued window function

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generalization of Hardy uncertainty principle for the windowed Bochner-Fourier transform on the Heisenberg group is proved. We consider a Bochner measurable function Ψ : G → X, where X is a completely separable Hilbert space X and Let G be a completely separable, unimodular, connected nilpotent Lie group. We establish that if ϕ ∈ CC(G) is a non-trivial window function and Ψ ∈ L2(G) satisfies ‖Vϕ(Ψ)(g, χ)‖HB ≤ c2(g) exp(−β‖χ‖2), β > 0, then Ψ = 0 almost everywhere.
Wydawca
Rocznik
Strony
215--222
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Partial Differential Equations, The National Technical University of Ukraine, “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Bibliografia
  • [1] G. Alagic and A. Russell, Uncertainty principles for compact groups, Illinois J. Math. 52 (2008), no. 4, 1315-1324.
  • [2] E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006), no. 2, 489-509.
  • [3] M. Caspers, The Lp-Fourier transform on locally compact quantum groups, J. Operator Theory 69 (2013), no. 1, 161-193.
  • [4] T. Cooney, A Hausdorff-Young inequality for locally compact quantum groups, Internat. J. Math. 21 (2010), no. 12, 1619-1632.
  • [5] M. Cowling, A. Sitaram and M. Sundari, Hardy’s uncertainty principle on semisimple groups, Pacific J. Math. 192 (2000), no. 2, 293-296.
  • [6] J. Crann and M. Kalantar, An uncertainty principle for unimodular quantum groups, J. Math. Phys. 55 (2014), no. 8, Article ID 081704.
  • [7] M. Daws, Representing multipliers of the Fourier algebra on non-commutative Lp spaces, Canad. J. Math. 63 (2011), no. 4, 798-825.
  • [8] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), no. 3, 906-931.
  • [9] B. K. Germain and K. Kinvi, On Gelfand pairs over hypergroups, Far East J. Math. 132 (2021), 63-76.
  • [10] J. Gilbert and Z. Rzeszotnik, The norm of the Fourier transform on finite abelian groups, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 4, 1317-1346.
  • [11] B. X. Han and Z. Xu, Sharp uncertainty principles on metric measure spaces, preprint (2023), https://arxiv.org/abs/2309.00847.
  • [12] H. Huo, Uncertainty principles for the offset linear canonical transform, Circuits Systems Signal Process. 38 (2019), no. 1, 395-406.
  • [13] C. Jiang, Z. Liu and J. Wu, Noncommutative uncertainty principles, J. Funct. Anal. 270 (2016), no. 1, 264-311.
  • [14] C. Jiang, Z. Liu and J. Wu, Uncertainty principles for locally compact quantum groups, J. Funct. Anal. 274 (2018), no. 8, 2399-2445.
  • [15] P. C. Kainen and A. Vogt, Bochner integrals and neural networks, in: Handbook on Neural Information Processing, Springer, Berlin (2023), 183-214.
  • [16] T. Li and J. Zhang, Sampled-data based average consensus with measurement noises: Convergence analysis and uncertainty principle, Sci. China Ser. F 52 (2009), no. 11, 2089-2103.
  • [17] Z. Liu, S. Wang and J. Wu, Young’s inequality for locally compact quantum groups, J. Operator Theory 77 (2017), no. 1, 109-131.
  • [18] Z. Liu and J. Wu, Uncertainty principles for Kac algebras, J. Math. Phys. 58 (2017), no. 5, Article ID 052102.
  • [19] K. Smaoui and K. Abid, Heisenberg uncertainty inequality for Gabor transform on nilpotent Lie groups, Anal. Math. 48 (2022), no. 1, 147-171.
  • [20] K. T. Smith, The uncertainty principle on groups, SIAM J. Appl. Math. 50 (1990), no. 3, 876-882.
  • [21] K. Vati, Gelfand pairs over hypergroup joins, Acta Math. Hungar. 160 (2020), no. 1, 101-108.
  • [22] M. Yaremenko, The irregular Cantor sets Ce ([0, 1]) and Cπ([0, 1]), and the Cantor-Lebesgue irregular functions Ge and Gπ, Proof 3 (2023), 29-31.
  • [23] Q. Y. Zhang, Discrete windowed linear canonical transform, in: 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), IEEE Press, Piscataway (2016), DOI: 10.1109/ICSPCC.2016.7753728.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d131639-82eb-4827-a609-b4fa7c3e2959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.