PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable antennas positions solution to reduce pointing errors due to wind speed and temperature coupled effects during free space optical link using matrix Rician pointing error model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pointing errors (PE) during free space optical (FSO) transmission can be caused by laser beam wander due to thermal and wind dynamic instability. The aim of this work is to study the coupled effects of temperature and wind speed on PE using matrix Rician pointing error (MRPE) model; then show how variable antennas height can reduce PE due to wind speed and temperature coupled effects. To achieve this purposes, average PE expression was established using MRPE model. Then considering a Gaussian beam wave and Monin–Obukhov similarity functions for the structure parameters of temperature, explicit relationship was established between average PE, temperature and wind speed. It comes out of this study that under dynamic turbulence, one can appropriately modify temperature to reduce PE due to dynamic instability and reciprocally. Depending on turbulence large cells or frozen turbulence eddies distribution, PE can be reduced by appropriately modified antennas height or the distance between transmitter and receiver. That is why this work suggests to install variable or dynamic antennas (rather than fixed ones) which could intelligently modify its positions according to laser beam wander created by atmospheric turbulence.
Czasopismo
Rocznik
Strony
393--406
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • National Higher Polytechnic School of Douala, University of Douala, P.O. Box 2701, Douala, Cameroon
autor
  • National Higher Polytechnic School of Douala, University of Douala, P.O. Box 2701, Douala, Cameroon
  • National Higher Polytechnic School of Douala, University of Douala, P.O. Box 2701, Douala, Cameroon
  • National Higher Polytechnic School of Douala, University of Douala, P.O. Box 2701, Douala, Cameroon
Bibliografia
  • [1] 10 Gbit/s Artolink Model [Online]. Available: http://artolink.com/ page/products/free space optics Artolink 10Gbps/ (2016).
  • [2] SAAD W., BENNIS M., CHEN M., A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, arXiv:1902.10265. https://doi.org/10.48550/arXiv.1902.10265
  • [3] STRINATI E.C., BARBAROSSA S., GONZALEZ-JIMENEZ J.L., KTÉNAS D., CASSIAU N., DEHOS C., 6G: The next frontier, arXiv:1901.03239. https://doi.org/10.48550/arXiv.1901.03239
  • [4] SOSZKA M., Fading channel prediction for 5G and 6G mobile communication systems, International Journal of Electronics and Telecommunications 68(1), 2022: 153-160. https://doi.org/10.24425/ijet.2022.139863
  • [5] YAACOUB E., ALOUINI M.S., A key 6G challenge and opportunity – connecting the remaining 4 billions: A survey on rural connectivity, arXiv:1906.11541. https://doi.org/10.48550/arXiv.1906.11541
  • [6] SIBANA K., MUYINGI H.N., MABANZA N., Building wireless community networks with 802.16 standard, 3rd International Conference on Broadband Communications, Information Technology and Biomedical Applications, Gauteng, South Africa, November 2008.
  • [7] ALZENAD M., SHAKIR M.Z., YANIKOMEROGLU H., ALOUINI M.S., FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks, IEEE Communications Magazine 56(1), 2018: 218-224. https://doi.org/10.1109/MCOM.2017.1600735
  • [8] Laser Optronics Site [Online]. Available: http://www.laseropronics.com (2012).
  • [9] AL NABOULSI M., Contribution à l’étude des liaisons optiques atmosphériques, propagation, disponibilité et fiabilité, Thèse de doctorat, Université de Bourgogne, 2005.
  • [10] ANDREWS L.C., PHILLIPS R.L., HOPEN C.Y., Laser Beam Scintillation with Applications. Washington: SPIE Press, 2001.
  • [11] ALKHOLIDI A.G., ALTOWIJ K.S., Free space optical communications — Theory and practices, [In] Contemporary Issues in Wireless Communications, [Ed.] M. Khatib, InTech, 2014. https://doi.org/10.5772/58884
  • [12] ARANY L., BHATTACHARYA S., MACDONALD J., HOGAN S.J., Simplified critical mudline bending moment spectra of offshore wind turbine support structures, Wind Energy 18(12), 2015: 2171-2197. https://doi.org/10.1002/we.1812
  • [13] LIU C., YAO Y., SUN Y., ZHAO X., Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels, Chinese Optics Letters 8(6), 2010: 537-540.
  • [14] BORAH D.K., VOELZ D.G., Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence, Journal of Lightwave Technology 27(18), 2009: 3965-3973. https://doi.org/10.1109/JLT.2009.2022771
  • [15] GAO F., O’DONOGHUE T., WANG W., Full-field analysis of wavefront errors in point diffraction interferometer with misaligned Gaussian incidence, Applied Optics 59(1), 2020: 210-216. https://doi.org/10.1364/AO.59.000210
  • [16] XU C., HAN W., WANG D., HUANG D., YUAN P., Modeling and correction for the optical axis pointing error of an airborne electro-optical platform, Applied Optics 58(23), 2019: 6455-6463. https://doi.org/10.1364/AO.58.006455
  • [17] GAPPMAIR W., NISTAZAKIS H.E., Subcarrier PSK performance in terrestrial FSO links impaired by gamma-gamma fading, pointing errors, and phase noise, Journal of Lightwave Technology 35(9), 2017: 1624-1632. https://doi.org/10.1109/JLT.2017.2685678
  • [18] HASSAN Z., HOSSAIN J., CHENG J., LEUNG V.C.M., Effective capacity of coherent POLMUX OWC impaired by atmospheric turbulence and pointing errors, Journal of Lightwave Technology 34(21), 2016: 5007-5022. https://doi.org/10.1109/JLT.2016.2604345
  • [19] BOLUDA-RUIZ R., GARCÍA-ZAMBRANA A., CASTILLO-VÁZQUEZ C., CASTILLO-VÁZQUEZ B., HRANILOVIC S., Amplify-and-forward strategy using MRC reception over FSO channels with pointing errors, Journal of Optical Communications and Networking 10(5), 2018: 545-552. https://doi.org/10.1364/JOCN.10.000545
  • [20] WANG J., ZHOU Y., BAI R., WANG G., Point-ahead angle and coalignment error measurement method for free-space optical communication systems, Journal of Lightwave Technology 35(18), 2017: 3886-3893. https://doi.org/10.1109/JLT.2017.2718578
  • [21] BOLUDA-RUIZ R., GARCÍA-ZAMBRANA A., CASTILLO-VÁZQUEZ C., CASTILLO-VÁZQUEZ B., HRANILOVIC S., Outage performance of exponentiated Weibull FSO links under generalized pointing errors, Journal of Lightwave Technology 35(9), 2017: 1605-1613. https://doi.org/10.1109/JLT.2017.2658956
  • [22] ZHOU Y., LU Y., HEI M., LIU G., FAN D., Pointing error analysis of Risley-prism-based beam steering system, Applied Optics 53(25), 2014: 5775-5783. https://doi.org/10.1364/AO.53.005775
  • [23] FARID A.A., HRANILOVIC S., Outage capacity optimization for free-space optical links with pointing errors, Journal of Lightwave Technology 25(7), 2007: 1702-1710. https://doi.org/10.1109/JLT.2007.899174
  • [24] DING J., XIE X., TAN L., MA J., KANG D., Dual-hop RF/FSO systems over κ-μ shadowed and Fisher-Snedecor F fading channels with non-zero boresight pointing errors, Journal of Lightwave Technology 40(3), 2022: 708-719. https://doi.org/10.1109/JLT.2021.3120767
  • [25] HAN L., LIU X., WANG Y., LI B., Joint impact of channel estimation errors and pointing errors on FSO communication systems over F turbulence channel, Journal of Lightwave Technology 40(14), 2022: 4555-4561. https://doi.org/10.1109/JLT.2022.3167035
  • [26] BALAJI K.A., PRABU K., Performance evaluation of FSO system using wavelength and time diversity over Malaga turbulence channel with pointing errors, Optics Communications 410, 2018: 643-651. https://doi.org/10.1016/j.optcom.2017.11.006
  • [27] ANSARI I.S., YILMAZ F., ALOUINI M.-S., Performance analysis of free-space optical links over Malaga (M ) turbulence channels with pointing errors, IEEE Transactions on Wireless Communications 15(1), 2016: 91-102. https://doi.org/10.1109/TWC.2015.2467386
  • [28] ALSHAER N., ISMAIL T., NASR M.E., Generic evaluation of FSO system over Málaga turbulence channel with MPPM and non-zero-boresight pointing errors, IET Communications 14(18), 2020: 3294-3302. https://doi.org/10.1049/iet-com.2020.0296
  • [29] BEN ISSAID C., PARK K.H., ALOUINI M.S., A generic simulation approach for the fast and accurate estimation of the outage probability of single hop and multihop FSO links subject to generalized pointing errors, IEEE Transactions on Wireless Communications 16(10), 2017: 6822-6837. https://doi.org/10.1109/TWC.2017.2731947
  • [30] SANDALIDIS H.G., CHATZIDIAMANTIS N.D., KARAGIANNIDIS G.K., A tractable model for turbulenceand misalignment-induced fading in optical wireless systems, IEEE Communications Letters 20(9), 2016: 1904-1907. https://doi.org/10.1109/LCOMM.2016.2584612
  • [31] LI M., GUO Y., WANG X., FU W., ZHANG Y., WANG Y., Researching pointing error effect on laser linewidth tolerance in space coherent optical communication systems, Optics Express 30(4), 2022: 5769-5787. https://doi.org/10.1364/OE.447408
  • [32] YI X., YAO M., Free-space communications over exponentiated Weibull turbulence channels with nonzero boresight pointing errors, Optics Express 23(3), 2015: 2904-2917. https://doi.org/10.1364/OE.23.002904
  • [33] YANG F., CHENG J., TSIFTSIS T.A., Free-space optical communication with nonzero boresight pointing errors, IEEE Transactions on Communications 62(2), 2014: 713-725. https://doi.org/10.1109/TCOMM.2014.010914.130249
  • [34] ALHEADARY W.G., Free Space Optics for 5G Backhaul Networks and Beyond, Thesis for the Degree of Doctor of Philosophy, King Abdullah University of Science and Technology, July 2018, p. 26.
  • [35] BECKMANN P., Statistical distribution of the amplitude and phase of a multiply scattered field, Journal of Research of the National Bureau of Standards 66D(3), 1962: 231-240.
  • [36] SIMON M.K., ALOUINI M.S., Digital Communication over Fading Channel, 2nd Ed., Wiley, New York City, USA, 2005.
  • [37] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation Through Random Media, Bellingham, Washington, 1998.
  • [38] ALDA J., Laser and Gaussian beam propagation and transformation, Encyclopedia of Optical Engineering, Marcel Dekker Inc., New York, 2003.
  • [39] PROKES A., Modeling of atmospheric turbulence effet on terrestrial FSO link, Radioengineering 18(1), 2009: 42-47.
  • [40] GHASSEMLOOY Z., POPOOLA W., RAJBHANDARI S., Optical wireless communications: system and channel modelling with MATLAB, CRC Press, Boca Raton, FL, 2012.
  • [41] LI D., BOU-ZEID E., H.A.R. DE BRUIN H.A.R., Monin–Obukhov similarity functions for the structure parameters of temperature and humidity, Boundary-Layer Meteorology 145, 2012: 45-67. https://doi.org/10.1007/s10546-011-9660-y
  • [42] Specific Heat of Air vs. Temperature. users.wpi.edu
  • [43] KAUSHAL H., KUMAR V., DUTTA A., AENNAM H., JAIN V.K., KAR S., JOSEPH J., Experimental study on beam wander under varying atmospheric turbulence conditions, IEEE Photonics Technology Letters 23(22), 2011: 1691-1693. https://doi.org/10.1109/LPT.2011.2166113
  • [44] SCHLIPF D., TRABUCCHI D., BISCHOFF O., HOFSÄSS M., MANN J., MIKKELSEN T., RETTENMEIER A., TRUJILLO J., KÜHN M., Testing of Frozen Turbulence Hypothesis for Wind Turbine Applications with a Scanning LIDAR System, In Detaled Program ISARS. http://www.isars2010.uvsq.fr/
  • [45] GENG C., HE G., WANG Y., XU C., LOZANO-DURÁN A., WALLACE J.M., Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis, Physics of Fluids 27(2), 2015: 025111. https://doi.org/10.1063/1.4908070
  • [46] HE X., HE G., TONG P., Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis, Physical Review E 81(6), 2010: 065303(R). https://doi.org/10.1103/PhysRevE.81.065303
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d1057d4-f78d-455c-930b-80a5d65467fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.