PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stirling engines - the state of technology development and computational models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stirling engines represent a technologically important solution in combined heat and power systems. Their use enables the achievement of over 90 percent efficiency in the management of the primary energy source with a very high durability of the device, mainly due to the lack of contact of the working gas with external factors and a very small number of mechanical components. The use of a Stirling engine may be equally important when applying renewable energy sources or waste heat from other processes. The first part of the work presents an overview of available commercial Stirling engine solutions. The second part of the work presents an overview of numerical models of Stirling engine operation, which enable the correct selection of the main geometrical features of the devices and the improvement of the structure in order to maximize efficiency or power.
Czasopismo
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 29 poz., fot. kolor., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Gdańsk University of Technology
  • Faculty of Mechanical Engineering, Gdańsk University of Technology
Bibliografia
  • [1] BABAELAHI, M., SAYYAADI, H. A new thermal model based on polytropic numerical simulation of Stirling engines. Applied Energy. 2015, 141, 143-159. https://doi.org/10.1016/j.apenergy.2014.12.033
  • [2] BABAELAHI, M., SAYYAADI, H. Modified PSVL: A second order model for thermal simulation of Stirling engines based on convective-polytropic heat transfer of working spaces. Applied Thermal Engineering. 2020, 85, 340-355. https://doi.org/10.1016/j.applthermaleng.2015.03.018
  • [3] CHEN, N.C.J., GRIFFIN, F.P. Review of Stirling-engine mathematical models. Oak Ridge, TN 1993. https://doi.org/10.2172/5948203
  • [4] COSTEA, M., PETRESCU, S., HARMAN, C. Effect of irreversibilities on solar Stirling engine cycle performance. Energy Conversion and Management. 1999, 40(15), 1723-1731. https://doi.org/10.1016/S0196-8904(99)00065-5
  • [5] Engines, Microgen. https://www.microgen-engine.com/engines/
  • [6] GARCÍA, M.T., TRUJILLO, E.C., GODIÑO, J.A.V. et al. Thermodynamic model for performance analysis of a Stirling engine prototype. Energies. 2018, 11(10). https://doi.org/10.3390/en11102655
  • [7] HOSSEINZADE, H., SAYYAADI, H. CAFS: The combined adiabatic-finite speed thermal model for simulation and optimization of Stirling engines. Energy Conversion and Management. 2014, 91, 32-53. https://doi.org/10.1016/j.enconman.2014.11.049
  • [8] Inspirit Charger https://www.inspirit-energy.com/the-inspirit-charger/
  • [9] INVERNIZZI, C.M. Closed power cycles: Thermodynamic fundamentals and applications. Lecture Notes in Energy. 2013, 11. https://doi.org/10.1007/978-1-4471-5140-1
  • [10] KROPIWNICKI, J. Analysis of start energy of Stirling engine type alpha. Archives of Thermodynamics. 2019, 40(3), 243-259. https://doi.org/10.24425/ather.2019.130004
  • [11] ML3000, Genoa Stirling. https://genoastirling.com/eng/engine-ml3000.php
  • [12] ML1000, Genoa Stirling. https://genoastirling.com/eng/engine-ml1000.php
  • [13] ORGAN, A.J. The Regenerator and the Stirling Engine. Wiley-Blackwel. 1997.
  • [14] PETRESCU, S., COSTEA, M., FEIDT, M. et al. Advanced thermodynamics of irreversible processes with finite speed and finite dimension. AGIR Publishing House Bucharest 2015, 259-273.
  • [15] PowerGen 1200, Protek Safety & Control. https://www.proteksc.com/pdf/PowerGen-1200.pdf
  • [16] PowerGen 5650, Protek Safety & Control. https://www.proteksc.com/pdf/PowerGen-1200.pdf
  • [17] PUDLIK, W. Termodynamika. Gdansk University of Technology Publishing House. Gdańsk 2011.
  • [18] SCHMIDT, G. Classical analysis of operation of Stirling engine. 1871, 15. A report published in German engineering union.
  • [19] STANDARD ENGINE CATALOG, Genoa Stirling. https://genoastirling.com/attach/Catalogo_2017_ENG.pdf
  • [20] Stirling generators, Sunnytek. http://www.sunnytek.se/solenergi/termoelektrisk-energiteknik/stirling-generators.pdf
  • [21] URIELI, I. Chapter 3a - Ideal Isothermal Analysis. https://www.ohio.edu/mechanical/stirling/isothermal/isothermal.html
  • [22] URIELI, I. Chapter 4a - Ideal Adiabatic Analysis. https://www.ohio.edu/mechanical/stirling/adiabatic/adiabatic.html
  • [23] URIELI, I. Energy analysis - ideal isothermal model. www.ohio.edu/mechanical/stirling/isothermal/energy.html
  • [24] URIELI, I. Regenerator mean effective temperature. https://www.ohio.edu/mechanical/stirling/isothermal/regenT.html
  • [25] URIELI, I. Stirling engine ideal adiabatic analysis (updated 1/15/10). https://www.ohio.edu/mechanical/stirling/adiabatic/adiabatic.html
  • [26] URIELI, I., BERCHOWITZ, D. Stirling Cycle Engine Analysis. Hingham: Adam Hilger Ltd. 1994.
  • [27] WAJS, J., MIKIELEWICZ, D., JAKUBOWSKA, B. Performance of the domestic micro ORC equipped with the shell-and-tube condenser with minichannels. Energy. 2018, 157, 853-861. https://doi.org/10.1016/j.energy.2018.05.174
  • [28] Whispergen PPS 16. https://www.victronenergy.com/Manuals/WhisperGen/UserManual/UserBookDO40015D.pdf
  • [29] WU, C., CHEN, L., CHEN, J. Recent advances in finite-time thermodynamics. Nova Science Publishers. 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d0e1804-c18f-41af-b840-f5d117586097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.