PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy recovery from a system with double magnet. Analytical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the research presented in this paper is to find an analytical solution for an electromagnetic energy harvester with double magnet. A double magnet configuration is defined as a structure in which two magnets, either attracting or repelling, are positioned at a constant distance from each other. Analytical dependencies that govern the shape of electromechanical coupling coefficient curves for various double magnet configurations are provided. In the subsequent step of the analysis, resonance curves for its vibrations and the corresponding recovered energy were determined for the selected dual magnet settings using the harmonic balance method. These characteristics enabled us to ascertain the optimal resistance and estimate the maximum electrical power that can be harvested from the vibrations of the double magnets.
Rocznik
Strony
73--85
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin, Poland
Bibliografia
  • [1] M. Wozniak, K. Kud, A. Badora, and L. Wozniak. Electricity production and consumption perspectives in the opinion of the youth of South-Eastern Poland. Energies, 15:4776, 2022. doi: 10.3390/en15134776.
  • [2] J. Ocioszynski and P. Majewski. Energy recovery for reducing toxic exhaust emissions in selected energetic states of individual operating cycle in self-driven heavy machinery. Archive of Mechanical Engineering, 48(4):301–317, 2001.
  • [3] R. Di Leo, M. Viscaedi, F.P. Tuccinardi, and M. Visione. Numerical modelling of a piezo roof harvesting system: the right component selection. Archive of Mechanical Engineering, 64(2):257–282, 2017. doi: 10.1515/meceng-2017-0016.
  • [4] K. Fan, P. Xia, R. Li, J. Guo, Q. Tan, and D. Vei. An innovative energy harvesting backpack strategy thought a flexible mechanical motion rectifier. Energy Conversion and Management, 264:115731, 2022. doi: 10.1016/j.enconman.2022.115731.
  • [5] P. Carneiro, M.P. Soares dos Santos, A. Rodrigues, J.A.F. Ferreira, J.A.O. Simoes, A. Torres Marques, and A.L. Kholkin. Electromagnetic energy harvesting using magnetic levitation architectures: a review. Applied Energy, 260:114191, 2020. doi: 10.1016/j.apenergy.2019.114191.
  • [6] S.C. Kim, J.G. Kim, Y.C. Kim, S.J. Yang, and H. Lee. A study of electromagnetic vibra- tion energy harvesters: design optimization and experimental validation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6:779–788, 2019. doi: 10.1007/s40684-019-00130-4.
  • [7] B.C. Lee and G.S. Chung. Low-frequency driven energy harvester with multi-pole structure. Journal of Mechanical Science and Technology, 29(2):441–446, 2015. doi: 10.1007/s12206-015-0102-5.
  • [8] A. Mitura and K. Kecik. Investigation of electromechanical coupling characteristic of a double magnet system. Materials Research Proceedings, 30:55–60, 2023. doi: 10.21741/ 9781644902578-8.
  • [9] A. Mitura and K. Kecik. Analytical and numerical analysis of electromagnetic harvester with a nonlinear coupling. Proceedings of the 29th International Congress on Sound and Vibration, 29:426, 2023.
  • [10] A. Mitura and K. Kecik. Modeling and energy recovery from a system with two pseudo-levitating magnets. Bulletin of the Polish Academy of Sciences Technical Sciences, 70(4):e141721, 2022. doi: 10.24425/bpasts.2022.141721.
  • [11] M. Ostrowski, B. Blachowski, M. Bochenski, D. Piernikarski, P. Filipek, and W. Janicki. Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and springs bumpers. Bulletin of the Polish Academy of Sciences Technical Sciences, 68(6):1373–1383, 2020. doi: 10.24425/bpasts.2020.135384.
  • [12] M.A. Razzak. A simple harmonic balance method for solving strongly nonlinear oscillators. Journal of the Association of Arab Universities for Basic and Applied Sciences, 21:68–76, 2016. doi: 10.1016/j.jaubas.2015.10.002.
  • [13] M. Mosch and G. Fischerauer. A comparison of methods to measure the coupling coefficient of electromagnetic vibration energy harvesters. Micromachines, 10(12):826, 2019. doi: 10.3390/mi10120826.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d03c67d-b46d-4de4-ad6d-f9726ea4f60d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.