PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overstrength and ductility factors of XBF structures with pinned and fixed supports

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today's time, most seismic design codes are based on a linear elastic force-based approach that includes the nonlinear response (ductility and over strength) of the structure through a reduction factor (named behavior factor q in Eurocode 8 [EC8]). However, the use of a prescribed q-factor that is constant for a given structural system may fail in providing structures with the same risk level. This paper focuses on the estimation of actual values of q-factor for X-braced steel frames (XBFs) designed according to the European codes and comparing these values to those suggested in EC8. For this purpose, a nonlinear pushover analysis has been performed. The effects of specific parameters, such as the stories number, the brace slenderness ratio, the local response of structural members, and the support type, are evaluated. The results show that the most important parameter that affects the q-factor is the brace slenderness ratio, while the support type has less effect on this factor. Furthermore, a local strength criterion has been proposed to implicitly ensure that the suggested value of the q-factor is conservative.
Wydawca
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Djilali Bounaama University of Khemis Miliana, Khemis Miliana, Algeria
  • Hassiba Benbouali University of Chlef, Chlef, Algeria
  • Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont- Ferrand, France
  • Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont- Ferrand, France
Bibliografia
  • [1] European Committee for Standardization. (2005). Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings. EN 1998-1-1. Brussels.
  • [2] UBC Standards. (1997). Volume 2 of the Uniform Building Code: Structural engineering design provisions. UBC97. Whittier.
  • [3] Louzai, A. & Abed, A. (2015). Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses. Bulletin of Earthquake Engineering, 13 (6), 1773–1793. DOI:10.1007/s10518-014-9689-7.
  • [4] Elghazouli, A. Y. (2010). Assessment of European seismic design procedures for steel framed structures. Bulletin of Earthquake Engineering, 8 (1), 65–89. DOI:10.1007/s10518-009-9125-6.
  • [5] Ferraioli, M., Lavino, A. & Mandara, A. (2014). Behaviour Factor of Code-Designed Steel Moment-Resisting Frames. International Journal of Steel Structures, 14 (2), 243–254. DOI:10.1007/s13296-014-2005-1.
  • [6] Balendra, T. & Huang, X. (2003). Overstrength and Ductility Factors for Steel Frames Designed According to BS 5950. Journal of Structural Engineering ASCE, 129 (8), 1019–1035. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1019).
  • [7] Kim, J. & Choi, H. (2005). Response modification factors of chevron-braced frames. Engineering Structures, 27 (2), 285–300. DOI:10.1016/j.engstruct.2004.10.009.
  • [8] Mahmoudi, M. & Zaree, M. (2010). Evaluating response modification factors of concentrically braced steel frames. Journal of Constructional Steel Research, 66 (10), 1196–1204. https://doi.org/10.1016/j.jcsr.2010.04.004.
  • [9] Faggiano, B., Antonio Formisano, L. F., Macillo, V., Castaldo, C. & Mazzolani, F. M. (2014). Assessment of the Design Provisions for Steel Concentric X Bracing Frames with Reference to Italian and European Codes. The Open Construction and Building Technology Journal, 8 (Suppl 1: M3), 208–215. http://dx.doi.org/10.2174/1874836801408010208.
  • [10] Fanaie, N. & Shamlou, S. O. (2015). Response modification factor of mixed structures. Steel and Composite Structures, An International Journal, 19 (6), 1449–1466. DOI: 10.12989/scs.2015.19.6.1449.
  • [11] Kheyrodin, A. & Mashadiali, N. (2018). Response modification factor of concentrically braced frames with hexagonal pattern of braces. Journal of Constructional Steel Research, 148, 658–668. https://doi.org/10.1016/j.jcsr.2018.06.024.
  • [12] European Committee for Standardization. (2005). Eurocode 3: Design of steel structures-Part 1: General rules and rules for buildings. EN 1993-1-1. Brussels.
  • [13] Azad, S. K., Topkaya, C. & Astaneh-Asl, A (2017). Seismic behaviour of concentrically braced frames designed to AISC341 and EC8 provisions. Journal of Constructional Steel Research, 133, pp. 383–404. https://doi.org/10.1016/j.jcsr.2017.02.026.
  • [14] Ostraas, J. D., & Kraeinkler, H. (1990). STRENGTH AND DUCTILITY CONSIDERATIONS IN SEISMIC DESIGN. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California, USA. (Report No.90).
  • [15] Rahgozar, M. A. & Humar, J. L. (1998). Accounting for overstrength in seismic design of steel structures. Canadian Journal of Civil Engineering, 25 (1), 1–15. DOI: 10.1139/l97-045.
  • [16] Fanaie, N. & Afsar Dizaj, E. (2014). Response modification factor of the frames braced with reduced yielding segment BRB. Structural Engineering and Mechanics, An International Journal, 50 (1), 1–17. DOI: 10.12989/sem.2014.50.1.001.
  • [17] Attia, W. A. & Irheem, M. M. M. (2018). Boundary condition effect on response modification factor of X-braced steel frames, HBRC Journal, 4 (1), pp. 104–121. https://doi.org/10.1016/j.hbrcj.2016.03.002.
  • [18] Kappos, A. J. (1999). Evaluation of behaviour factors on the basis of ductility and overstrength studies. Engineering Structures, 21 (9), 823–835. DOI: http://dx.doi.org/10.1016/S0141-0296(98)00050-9.
  • [19] Mazzolani, F. M. & Piluso, V. (1996). Theory and Design of Seismic Resistant Steel Frames. London: E & FN Spon, An imprint of Chapman & Hall.
  • [20] ATC Standards. (1995). Applied Technology Council: A critical review of current approaches to earthquake-resistant design. ATC-34. Redwood City.
  • [21] Abdollahzadeh, G. & Banihashemi, M. (2013). Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB). Steel and Composite Structures, An International Journal, 14 (6), 621–636. DOI: 10.12989/scs.2013.14.6.621.
  • [22] Yahmi, D., Branci, T., Bouchaïr, A. & Fournely, E. (2018). Evaluating the Behaviour Factor of Medium Ductile SMRF Structures. Periodica Polytechnica Civil Engineering, 62 (2), 373–385. https://doi.org/10.3311/PPci.10419.
  • [23] Dehghani, E., Hamidi, S. A., Tehrani, F. M., Goyal, A., Mirghaderi, R. (2015). New Practical Approach to Plastic Analysis of Steel Structures. Periodica Polytechnica Civil Engineering, 59 (1), 27–35. https://doi.org/10.3311/PPci.7578.
  • [24] Nassar, A., & Krawinkler, H. (1991). Seismic demands for SDOF and MDOF systems. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California, USA. (Report No. 95).
  • [25] Fajfar, P. (2000). A nonlinear analysis method for performance based seismic design. Earthquake Spectra, 16 (3), 573–592. DOI: http://dx.doi.org/10.1193/1.1586128.
  • [26] Mahmoudi, M. & Zaree, M. (2013). Determination the response modification factors of buckling restrained braced frames. Procedia Engineering, 54, 222–231. DOI:10.1016/j.proeng.2013.03.020.
  • [27] Yahmi, D., Branci, T., Bouchaïr, A. & Fournely, E. (2017). Evaluation of behaviour factors of steel moment-resisting frames using standard pushover method. Procedia Engineering, 199, 397–403. https://doi.org/10.1016/j.proeng.2017.09.130.
  • [28] Farshid, F. & Sepideh, R. (2020). Supervised probabilistic failure prediction of tuned mass damper-equipped high steel frames using machine learning methods. Studia Geotechnica et Mechanica, 42(3), 179–190. https://doi.org/10.2478/sgem-2019-0043.
  • [29] Kamaris, G. S., Vallianatou, Y. M. & Beskos, D. E. (2012). Seismic damage estimation of in-plane regular steel moment resisting and x-braced frames. Bulletin of Earthquake Engineering, 10 (6), 1745–1766. DOI: 10.1007/s10518-012-9387-2.
  • [30] Computers and Structures Inc. (CSI). (2010). Structural Analysis Program: Linear and nonlinear static and dynamic analysis of three-dimensional structures. SAP2000. Berkeley.
  • [31] Mondal, A., Ghosh, S. & Reddy, G. R. (2013). Performance-based evaluation of the response reduction factor for ductile RC frames. Engineering Structures, 56, 1808–1819. DOI: http://dx.doi.org/10.1016/j.engstruct.2013.07.038.
  • [32] Federal Emergency Management Agency. (2000). American Society of Civil Engineers: Prestandard and Commentary for the Seismic Rehabilitation of Buildings. FEMA 356. Washington.
  • [33] Gholipour, M. & Alinia, M. M. (2016). Considerations on the Pushover Analysis of Multi-Story Steel Plate Shear Wall Structures. Periodica Polytechnica Civil Engineering, 60 (1), 113–126. https://doi.org/10.3311/PPci.7706.
  • [34] Branci, T., Yahmi, D. & BOUYAKOUB, S. (2020). ANALYSE STATIQUE NON LINÉAIRE D’OSSATURES MÉTALLIQUES CONTREVENTÉES PAR PALÉES EN X. ALGÉRIE ÉQUIPEMENT, 62, 01–07.
  • [35] Karavasilis, T. L., Bazeos, N. & Beskos, D. E. (2006). Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames. Engineering Structures, 28(1), 9–22. DOI: 10.1016/j.engstruct.2005.06.021.
  • [36] Banihashemi, M. R., Mirzagoltabar, A. R. & Tavakoli, H. R. (2015). Development of the performance based plastic design for steel moment resistant frame. International Journal of Steel Structures, 15 (1), 51–62. DOI: 10.1007/s13296-015-3004-6.
  • [37] Xiong, E., He, H., Cui, F. & Bai, L. (2016). Performance-Based Plastic Design Method for Steel Concentrically Braced Frames Using Target Drift and Yield Mechanism. Periodica Polytechnica Civil Engineering, 60 (1), 127–134. https://doi.org/10.3311/PPci.7383.
  • [38] Branci, T., Yahmi, D., Bouchaïr, A. & Fournely, E. (2016). Evaluation of Behavior Factor for Steel Moment-Resisting Frames. International Journal of Civil and Environmental Engineering, 10(3), 358–362. doi.org/10.5281/zenodo.1123588.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d017cc0-eda3-436e-95ba-4627d96cbeb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.