Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the application of artificial neural networks (ANN) for description of the Ramberg-Osgood (RO) material model, representing the nonlinear strain-stress relationship of ε(σ). A neural model of material (NMM) is a feed-forward layered neural network (FLNN) whose parameters were determined using the penalized least squares (PLS) method. A FLNN performing the inverse problem: σ(ε), using pseudo empirical patterns, was developed. Two models of NMM were developed, i.e. a standard model (SNN) and a model based on Bayesian inference (BNN). The properties of the models were compared on the example of a reference truss structure. The computations were performed by means of the hybrid FEM/NMM program, in which NMM developed previously described the current model of the material, and made it possible to explicitly build a tangent operator Et = dσ/dε. The neural model of material was applied to the analysis of the shakedown of load carrying capacity of an aluminum truss.
Rocznik
Tom
Strony
49--58
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- Department of Mechanics, Metal Structures and Computer Methods, Kielce University of Technology Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
- Institute for Computational Civil Engineering Cracow University of Technology Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- [1] J. Lemaitre, J.L. Chaboche. Mechanics of solid materials. University Press, Cambridge, 1994.
- [2] T. Furukawa, T. Sugata, S. Yoshimura, M. Hoffman. An automated system for simulation and parameter identification of inelastic constitutive models. Comput. Methods Appl. Mech. Eng., 191: 2235–2260, 2002.
- [3] M. Lefik, B.A. Schrefler. Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading. Comp & Struct., 80: 1699–1713, 2002.
- [4] G. Bolzon, V. Buliak, G. Maier, B. Miller. Assessment of elastic-plastic material parameters comparatively by three procedures based on indentation test and inverse analysis. Inverse Problems in Science and Eng., 19: 815–837, 2011.
- [5] J. Ghaboussi, D.A. Pecknold, M. Zhang, R.M. Haj-Ali. Autoprogressive training of neural network constitutive models. Int. J. Num. Meth. Eng., 42: 105–126, 1998.
- [6] E. Pabisek. Identification of an equivalent model for granular soils by FEM/NMM/p-EMP hybrid system. Computer Assisted Mech. Eng. Sci., 18: 283–290, 2011.
- [7] PN-EN 1999-1-1:2011, Design of aluminum structures. Part 1-1: General rules [in Polish: Projektowanie konstrukcji aluminiowych. Część 1-1: Reguły ogólne].
- [8] T. Akazawa, M. Nakashima, O. Sakaguchi. Simple model for simulating hysteretic behavior involving significant strain hardening. 11th World Conf. on Earthquake Eng., 264, 1996.
- [9] I.T. Nabney. Netlab: algorithms for pattern recognition, London, Springer, 2006.
- [10] Neural network toolbox for use with MATLAB. The MathWorks. Inc., 2006.
- [11] C.M. Bishop. Neural networks for pattern recognition. Oxford, Oxford University Press, 1995.
- [12] Y.M. Hashash, S. Jung, J. Ghaboussi. Numerical implementation of a neural network based material model in finite element analysis. Int. J. Num. Meth. Eng., 59: 989–1005, 2004.
- [13] A.P. Pérez-Foguet, A. Rodriguez-Ferran, A. Huerta. Numerical differentiation for local and global tangent operators in computational plasticity. Comput. Methods Appl. Mech. Engrg., 189: 277–296, 2000.
- [14] Z. Waszczyszyn, E. Pabisek. Elastoplastic analysis of plane steel frames by a new superelement. Archives of Civ. Eng., 48: 159–181, 2002.
- [15] 20 Meter Water Tower. U.S. Army Corps of Engineers, Engineering and Construction Division. US ARMY Engineer District, Afghanistan. APO AE, 09356, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cff45e5-d76f-4f33-a737-fefe90ad4ce6