Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the classical problem of horizontal waveinduced momentum transport is analyzed once again. A new analytical approach has been employed to reveal the vertical variation of this transport in the Eulerian description. In mathematical terms, this variation is shown to have (after “smoothing out” the surface corrugation) the character of a generalized function (distribution) and is described by a classical function in the water depths and by an additional Dirac-delta-function component on the averaged free surface. In terms of physics, the considered variation consists of two entities: (i) a continuous distribution of the mean momentum transport flux density (tensorial radiation pressure) over the entire water column, and (ii) an additional momentum transport flux concentrated on the mean free surface level (tensorial radiation surface pressure). Simple analytical formulae describing this variation have been derived. This allowed a conventional expression to be derived, describing the depth-integrated excess of horizontal momentum flux due to the presence of waves (the so-called “radiation stress”), confirming to some extent the correctness of the whole analysis carried out. The results obtained may be important to the ocean dynamics, especially in view of their possible application in the field of hydrodynamics of wave-dominated coastal zones.
Czasopismo
Rocznik
Tom
Strony
563--568
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Institute of Hydroengineering PAS (IBW PAN), ul. Kościerska 7, 80–328 Gdańsk, Poland
autor
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81–378 Gdynia, Poland
Bibliografia
- [1]. Cieślikiewicz W. & Gudmestad T. (1993). Stochastic characteristics of orbital velocities of random water waves. J. Fluid Mech. 255: 275-299.
- [2]. Cieślikiewicz W. & Gudmestad O. T. (1994). Random water wave kinematics. Archives of Hydro-Engineering and Environmental Mechanics, 41 (1-2), Part 1. Theory: 3-35; Part 2. Experiment: 37-85.
- [3]. Deigaard R. (1993). A note on the three-dimensional shear stress distribution in a surf zone, Coastal Engng. 20: 157-171.
- [4]. De Vriend H. J. & Stive M. J. F. (1987). Quasi-3D modelling of nearshore currents. Coastal Engng. 11: 565-601.
- [5]. Dingemans M. A. (1997). Water wave propagation over uneven bottoms. Part I — Linear wave propagation. Singapore: World Scientific, 471 pp.
- [6]. Grusza G. (2007). Three-dimensional modelling of wave-generated currents in coastal zone. Ph.D. Diss. (in Polish), Inst. of Oceanogr., University of Gdańsk, Gdynia, Poland, 97 pp.
- [7]. Herman A. (2006). Three-dimensional structure of wave- induced momentum flux in irrotational waves in combined shoaling-refraction conditions. Coastal Engng. 53: 545-555.
- [8]. Krauss W. (1973). Dynamics of the homogeneous and the quasihomogeneous ocean. Methods and Results of Theoretical Oceanography, vol. 1. Berlin: Gebr. Borntraeger.
- [9]. Lin P. & Zhang D. (2004). The Depth-Dependent Radiation Stresses and Their Effect on Coastal Currents. The 6 th International Conference on Hydrodynamics, 23-27, November 2004 , West Leederville , Western Australia.
- [10]. Longuet-Higgins M. S. & Stewart R. W (1960). Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8: 565-583.
- [11]. Longuet-Higgins M. S. & Stewart R. W (1962). Radiation stress and mass transport in gravity waves with application to „surf beats”. J. Fluid Mech. 13: 481-504.
- [12]. Longuet-Higgins M. S. & Stewart R. W (1964). Radiation stresses in water waves; a physical discussion with applications Deep Sea Res. 11: 529-562.
- [13]. Lundgren H. (1962). The concept of the wave thrust. Coastal Engng. Lab., Tech. Univ. Denmark, Basic Res. - Progr. Rep. 3: 1-5.
- [14]. Lundgren H. (1963). Wave thrust and energy level. Proc. 10th Congr. Int. Assoc. Hydr. Res., London, Paper 1.20, 1: 147-151.
- [15]. Mei C. C. (1989). The Applied Dynamics of Ocean Surface Waves. Singapore: World Scientific, 740 pp.
- [16]. Mellor G. L. (2003). The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33: 1978-1989.
- [17]. Mellor G. L. (2011). Wave radiation stress. Ocean Dyn., 61 (5), pp. 563-568. DOI: 10.1007/s10236-010-0359-2.
- [18]. Mellor G. L. (2013). Waves, circulation and vertical dependence. Ocean Dynamics, 63, 447-457.
- [19]. Nielsen P. (1992). Coastal bottom boundary layers and sediment transport. Advanced Series in Ocean Engineering, vol. 4, World Scientific Publishing Co., Singapore.
- [20]. Nobuoka H., Mimura N. & Kato H. (1998). Three-dimensional nearshore currents model based on vertical distribution of radiation stress. Proceedings of the International Conference on Coastal Engineering, ASCE, 1: 829-842.
- [21]. Phillips O. M. (1977). The dynamics of the upper ocean. Cambridge University Press, Cambridge e.a., 336 pp.
- [22]. Stive M. J. F. & Wind H. G. (1986). Cross-shore mean flow in the surf zone. Coastal Engng. 10: 325-340.
- [23]. Webb B. M. & Slinn D. N. (2004). Vertical distribution of radiation stress for non-linear shoaling waves. AGU Fall Meeting.
- [24]. Xia H., Xia Z. & Zhu L. (2004). Vertical variation in radiation stress and wave-induced current. Coastal Engng. 51: 309¬321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cff0c2e-eae1-4e86-bae7-8de6939df773