PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbiological Tests of Air Quality in Car Cabins–Preliminary Tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to determine the concentration of fungi and bacteria in the air inside the car cabin and, on this basis, to determine the air quality in the passenger car cabin. The aim of the work is also to demonstrate the impact of hygienic maintenance of filtering devices on the quality of indoor air. The subjects of the research are car cabins, as an example of small, enclosed spaces in which people may remain. The tests were carried out in the summer of 2020 in three passenger cars. Based on the conducted research, it was found that the operation time of regularly serviced air conditioning has a positive effect on the air quality in small, confined spaces. The vehicle with the longest-used filter was characterised by the highest concentration of fungi (8369 CFU/m3) and bacteria (16563 CFU/m3) in the environment inside the car cabin, which means that periodic replacement of the filters in the car’s ventilation system is very important. In Poland, it is recommended that such a filter be replaced after a year or after driving 10,000–15,000 kilometres. In analysing the state of air quality in the examined confined spaces, it can be concluded that by ensuring regular replacement of cabin filters and air conditioning servicing, we have a very large impact on indoor air quality.
Rocznik
Strony
323--331
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Warsaw Institute of Environmental Engineering, University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warsaw, Poland
  • Warsaw Institute of Environmental Engineering, University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warsaw, Poland
  • Warsaw Institute of Environmental Engineering, University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warsaw, Poland
  • Department of HVAC Engineering, Faculty of Civil Engineering, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
Bibliografia
  • 1. Abbasi F., Samaei M.R., Manoochehri Z., Jalili M., Yazdani E. 2020. The effect of incubation temperature and growth media on index microbial fungi of indoor air in a hospital building in Shiraz, Iran. Journal of Building Engineering, 31, doi: 101294. 10.1016/j.jobe.2020.101294.
  • 2. Adamkiewicz Ł., Matyasik N. 2019. Smog in Poland and its consequences (in Polish). Polski Instytut Ekonomiczny (Polish Economic Institute), 6-8.
  • 3. Aquino S., Alves de Lima J.E., Borrely S.I. 2023. Combined application of gamma radiation, cleaning and chemical sanitizers in decontamination of vehicle air conditioning filters. Brazilian Journal of Radiation Sciences, 11(2), 1–11. doi: 10.15392/2319-0612.2023.2244.
  • 4. Barnes N.M., Ng T.W., Ma K.K., Lai K.M. 2018. In-cabin air quality during driving and engine idling in air-conditioned private vehicles in Hong Kong. International Journal of Environmental Research and Health, 15, 611. doi: 10.3390/ijerph15040611.
  • 5. Brodzik K., Faber J. 2017. Air quality in the car: current trends in requirements and testing methods (in Polish). Spatium, 18, 12, 37-41.
  • 6. Buitrago N.D., Savdie J., Almeida S.M., Cabo Verde S. 2021. Factors affecting the exposure to physicochemical and microbiological pollutants in vehicle cabins while commuting in Lisbon, Environmental Pollution, 270. doi: 116062, 10.1016/j. envpol.2020.116062.
  • 7. Bukłaha A., Wieczorek A., Kruszewska E., Majewski P., Iwaniuk D., Sacha P., Tryniszewska E., Wieczorek P. 2022. Air disinfection-from medical areas to vehicle. Frontiers in Public Health, 10, doi: 820816. 10.3389/fpubh.2022.820816.
  • 8. Chen Y., Li X., Zhang X., Gao W., Wang R., He D. 2022. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environmental Pollution, 292, 118465. doi: 10.1016/j. envpol.2021.118465.
  • 9. Chmiel M.J., Frączek K., Grzyb J. 2015. The problems of microbiological air contamination monitoring. Woda-Środowisko-Obszary Wiejskie, 15, 1(49), 17–27.
  • 10. Chulwoo Park, Hye Su, Jung Soyoon, Park Che, Ok Jeon, Woojun Park 2020. Dominance of gaseating, biofilm-forming methylobacterium species in the evaporator cores of automobile air-conditioning systems. ASM Journals mSphere, 5(1). doi: 10.1128/mSphere.00761-19.
  • 11. Chunling Qi, Yaxin Helian, Jiying Liu, Linhua Zhang. 2017. Experiment study on the thermal comfort inside a car passenger compartment. Procedia Engineering, 205, 3607-3614. doi: 10.1016/j. proeng.2017.10.211.
  • 12. Cox J., Stone T., Ryan P., Burkle J., Jandarov R., Mendell M.J., Niemeier-Walsh Ch., Reponen T. 2022. Residential bacteria and fungi identified by high-throughput sequencing and childhood respiratory health. Environmental Research, 204, 112377. doi: 10.1016/j.envres.2021.112377.
  • 13. Felgueiras F., Mourao Z., de Oliveira Fernandes E., Gabriel M.F. 2022. Airborne bacterial and fungal concentrations and fungal diversity in bedrooms of infant twins under 1 year of age living in Porto. Environmental Research, 206, 112568. doi: 10.1016/j.envres.2021.112568.
  • 14. Fernández-Iriarte A., Duchaine C., Degois J, Mbareche H., Veillette M., Moreno N., Amato F., Querol X., Moreno T. 2021. Bioaerosols in public and tourist buses. Aerobiologia, 37, 525–541. doi: 10.1007/s10453-021-09704-9.
  • 15. Gładysz J., Grzesiak A., Nieradko-Iwanicka B., Borzęcki A. 2010. The impact of air pollution on people’s health and life expectancy (in Polish). Problemy Higieny i Epidemiologii, 91(2), 178-180.
  • 16. Gładyszewska-Fiedoruk K. 2019. Survey research of selected issues the sick building syndrome (SBS) in an office building. Environmental and Climate Technologies, 23(2), 1–8. doi: 10.2478/ rtuect-2019-0050.
  • 17. Gładyszewska-Fiedoruk K., Teleszewski T.J. 2020. Modeling of humidity in passenger cars equipped with mechanical ventilation. Energies, 13, 2987. doi: 10.3390/en13112987.
  • 18. Gładyszewska-Fiedoruk K., Teleszewski T.J. 2023. Experimental research on the humidity in a passenger car cabin equipped with an air cooling system - development of a simplified model. Applied Thermal Engineering, 220, 119783, doi: 10.1016/j. applthermaleng.2022.119783.
  • 19. Gołofit-Szymczak M., Stobnicka-Kupiec A. 2018. Microbial air quality in air-conditioned passenger cars (in Polish). Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska, 20, 1, doi: 15641582. ISSN 1506-218X.
  • 20. Gołofit-Szymczak M., Stobnicka-Kupiec A., Górny R.L. 2019a. Impact of air-conditioning system disinfection on microbial contamination of passenger cars. Air Quality, Atmosphere & Health, 12(9), 1127-1135. doi: 10.1007/s11869-019-00731-7.
  • 21. Gołofit-Szymczak M., Górny R. L., StobnickaKupiec A., Ławniczek-Wałczyk A., Cyprowski M. 2019b. Microbial air quality in municipal buses before and after disinfection of their air-conditioning systems. Journal of Ecological Engineering, 20(10), 189-194. doi: 10.12911/22998993/113408.
  • 22. Gołofit-Szymczak M., Wójcik-Fatla A., StobnickaKupiec A. Górny R.L. 2023. Filters of automobile air conditioning systems as in-car source of exposure to infections and toxic moulds. Environmental Science and Pollution Research, 30, 108188–108200. doi: 10.1007/s11356-023-29947-y.
  • 23. Grzybowski P. 2011. Ocena i kontrola czystości mikrobiologicznej powietrza w samochodowych układach klimatyzacyjnych. Inżynieria i Aparatura Chemiczna, 50(5), 34-35.
  • 24. Guz Ł., Dumała S. M., Badora A., Gaweł D. 2023. Assessment of Exposure to Particulate and Microbiological Contaminants in a Lecture Room. Journal of Ecological Engineering, 24(12), 87-98. doi: 10.12911/22998993/172058.
  • 25. Lee J.H., Jo W.K. 2005. Exposure to airborne fungi and bacteria while commuting in passenger cars and public buses. Atmospheric Environment. 39(38), 7342-7350, doi: 10.1016/j.atmosenv.2005.09.013.
  • 26. Li J., Li M., Shen F., Zou Z., Yao M., Wu C.Y. 2013. Characterization of biological aerosol exposure risks from automobile air conditioning system. Environmental Science & Technology, 47, doi: 10660e10666.10.1021/es402848d.
  • 27. Li X., Yao M. 2023. Single viable fungal aerosol particle discerning using naked eye assisted with laser trapping and microwaving. Atmospheric Environment, 293, 119435. doi: 10.1016/j. atmosenv.2022.119435.
  • 28. Luksamijarulkul P., Sundhiyodhin V., Luksamijarulkul S., Kaewboonchoo O. 2004. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority. Journal of the Medical Association of Thailand, 87, 697–703.
  • 29. Łuniewski M. 2021. Engineer diploma thesis supervised by Magdalena Frąk (in Polish).
  • 30. MAS-100 Operating Manual MAS-100 3.0, 1-800222-0342 EMD Chemicals Inc. Gibbstown, NJ 08027.
  • 31. Merck, Microbiology Manual 12th Edition, 2010, Merck, 590-591.
  • 32. Chen M., Hu Q., Wang X., Zhang W, 2024. A review on recent trends of the antibacterial nonwovens air f ilter materials: Classification, fabrication, and application, Separation and Purification Technology, 330(Part B), 125404
  • 33. Pertegal V., Lacasa E., Ca ̃nizares P., Rodrigo M.A., Saez C. 2023. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hspital indoor air. Environmental Research, 216, 114458. doi: 10.1016/j.envres.2022.114458.
  • 34. PN-Z-04111/02:1989. Protection of air purity – Microbiological tests – Determination of the number of bacteria in the atmospheric air (immission) during sampling by aspiration and sedimentation methods.
  • 35. PN-Z-04111/03:1989. Protection of air purity – Microbiological tests – Determination of the number of microscopic fungi in the atmospheric air (immission) during sampling by aspiration and sedimentation methods.
  • 36. Pu G., Zeng D., Mo L., Liao J., Chen X., Qiu S., Lv Y. 2020. Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams. Ecotoxicology and Environmental Safety, 191, 110014. doi: 10.1016/j. ecoenv.2019.110014.
  • 37. Shinohara N., Hashimoto K., Kim H., YoshidaOhuchi H. 2023. Fungi, mites/ticks, allergens, and endotoxins in different size fractions of house dust from long-term uninhabited houses and inhabited houses. Building and Environment, 229, 109918. doi: 10.1016/j.buildenv.2022.109918.
  • 38. Skowron K., Grudlewska K., Kwiecińska-Piróg J., Gryń G., Śrutek M., Gospodarek-Komkowska E. 2018. Efficacy of radiant catalytic ionization to reduce bacterial populations in air and on different surfaces. Science of The Total Environment, 610611, 111-120. doi: 10.1016/j.scitotenv.2017.08.032.
  • 39. Sowiak M., Kozajda A., Jeżak K., SzadkowskaStańczyk I. 2018. Does the air condition system in busses spread allergic fungi into driver space? Environmental Science and Pollution Research, 25(5), 5013-5023. doi: 10.1007/s11356-017-0830-4.
  • 40. Staszowska A.B. 2023. Exposure to bacterial and fungal aerosol in the university library – a case study. Journal of Ecological Engineering, 24(10), 252-258. doi: 10.12911/22998993/170720.
  • 41. Udaya Prakash N.K., Bhuvaneswari S., Ranjith Kumar M., Lankesh S., Rupesh K. 2014. A study on the prevalence of indoor mycoflora in air conditioned buses. British Microbiology Research Journal, 4(3), 282–292.
  • 42. Vonberg R.P., Gastmeier P., Kenneweg, B., HoldackJanssen H., Sohr D., Iris F. Chaberny I.F. 2010. The microbiological quality of air improves when using air conditioning systems in cars. BMC Infectious Diseases, 10(146), doi: 10.1186/1471-2334-10-146.
  • 43. Wang Y.F., Tsai C.H., Huang Y.T., Chao H.R., Tsou T.C., Kuo Y.M., Wang L.C., Chen S.H. 2013. Size distribution of airborne fungi in vehicles under various driving conditions. Archives of Environmental and Occupational Health, 68, 95–100.
  • 44. WHO (2010). WHO Guidelines for Indoor Air Quality: Selected Pollutants, Geneva, Switzerland.
  • 45. Wolny-Koładka K., Malinowski M., Pieklik A., Kurpaska S. 2019. Microbiological air contamination in university premises and the evaluation of drug resistance of staphylococci occurring in the form of a bioaerosol. Indoor and Built Environment, 28(2), 235-246. doi: 10.1177/1420326X17748463.
  • 46. Zhu Y., Li X., Fan L., Li L., Wang J., Yang W., Wang L., Yao X., Wang X. 2021. Indoor air quality in the primary school of China–results from CIEHS 2018 study. Environmental Pollution, 291, 118094. doi: 10.1016/j.envpol.2021.118094.
  • 47. Żak J., Orlińska K., Koperny M., Foremny J., Bandoła K., Bała M. 2019. Legionella sp. in water systems in public teaching and education facilities in Małopolskie voivodeship in 2016, Przegląd Epidemiologiczny, 73(2), 227-237. doi: 10.32394/pe.73.21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cfec956-1e8a-48bc-aacc-832d77b7c3ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.