PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Forming graded microstructure of Al2O3-Ni composite by centrifugal slip casting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Formowanie mikrostruktury gradientowej kompozytu z układu Al2O3-Ni metodą odlewania odśrodkowego
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to examine the possibility of fabricating ceramic-metal composites with a gradient concentration of metal particles from the Al2O3-Ni system. As the method of composite fabrication, centrifugal slip casting (CSC) was chosen. This method is a technique for powder processing, that combines the effects of slip casting and centrifugal casting. In this work one variant of the centrifugal casting method was used. The horizontal rotation axis was applied. Aqueous based slurries (with 50 vol.% content of solid phase) consisting of alumina and nickel powder (10 vol.%) were tested. The macroscopic as well SEM observations confirmed the gradient concentration of nickel particles in the composites.
PL
Celem niniejszej pracy było zbadanie możliwości wytwarzania kompozytów ceramiczno-metalowych z gradientem stężenia cząstek metalu z układu Al2O3-Ni. Jako metodę wytwarzania kompozytów wybrano odlewanie odśrodkowe mas lejnych (CSC). Metoda ta jest techniką przetwarzania proszku, która łączy w sobie metody: odlewania z gęstwy oraz odlewanie odśrodkowe. W pracy zastosowano metodę odlewania odśrodkowego w układzie z poziomą osią obrotu. Wodną zawiesinę o zawartość fazy stałej 50% obj. przygotowano na bazie tlenku glinu i proszku niklu (10% obj.) Makroskopowe oraz mikroskopowe obserwacje potwierdziły uzyskanie materiału z gradientem stężenia cząstek niklu.
Rocznik
Strony
44--47
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • [1] Kieback B., Neubrand A., Riedel H., Processing techniques for functionally graded materials, Materials Science and Engineering, 2003, A362, 81-105.
  • [2] Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford R.G. (eds.), Functionally Graded Materials, Design, Processing and Applications, Kluwer Academic Publishers, Boston 1999.
  • [3] Hirai T., Functional gradient materials, Materials Science and Technology 1996, 17B, 293-341.
  • [4] Suresh S., Mortensen A., Fundamentals of Functionally Graded Materials, Processing and Thermomechanical Behavior of Graded Metals and, Metal-Ceramic Composites, IOM Communications Ltd, London 1998.
  • [5] Watanabe Y., Yamanaka N., Fukui Y., Control of composition gradient in a metal-ceramic functionally graded material manufactured by centrifugal method, Composites Part A 1998, 29A, 595-601.
  • [6] Takebe H., Morinaga K., Fabrication of zirconia-nickel functionally gradient materials by slip casting and pressureless-sintering, Materials and Manufacturing Processes 1994, 4, 721-733.
  • [7] Matsuda K., Watanabe Y., Fukui Y., Particle size distribution in in situ Al.-Al3Ni FGMs fabricated by centrifugal in situ method, Ceramic Trans. 2001, 114, 491-498.
  • [8] Watanabe Y., Nakamura T., Microstructures and wear resistances of hybrid Al-(Al3Ti+Al3Ni) FGMs fabricated by a centrifugal method, Intermetallics 2001, 9, 33-43.
  • [9] Watanabe Y., Kawamoto A., Matsuda K., Particle size distribution in functionally graded materials fabricated by the centrifugal solid-particle method, Composites Science and Technology 2002, 62, 881-888.
  • [10] Huisman W., Graule T., Gauckler L.J., Centrifugal slip casting of zirconia (TZP), Journal of the European Ceramic Society, 1994, 13, 33-39.
  • [11] Steinlage G.A., Roeder R.K., Trumble K.P., Bowman K.J., Textured ceramic tubes via centrifugal slip casting, Textures of Materials, Proceeding of the Eleventh International Conference on Textures of Materials, 1996, 2, 1045-1050.
  • [12] Gizowska M, Szafran M., Bobryk E., Wasilewski Ł., Konopka K., Ceramic-metal composites obtained by slip casting method, Composites Theory and Practice 2008, 1, 53-58.
  • [13] Roeder R.K., Steinlage G.A., Bowman K.J., Trumble K.P., Preventing segregation during centrifugal consolidation of particulate suspensions: Particle drafting, Journal of the American Ceramic Society, 1995, 78, 2367-2373.
  • [14] Daniel W.A., U.S. Patent No. 2962790, 1960.
  • [15] Daniel W.A., U.S. Patent No. 3041699, 1962.
  • [16] Gizowska M., Konopka K., Szafran M., Properties of water-based slurry for fabrication of ceramic-metal composites by slip casting method, Archives of Metallurgy and Materials 2011, 56, 1105-1110.
  • [17] Steinlage G., Roeder R., Trumble K., Bowman K., Preferred orientation of BSCCO via centrifugal slip casting, Journal of Materials Research 1994, 9, 833-836.
  • [18] Michalski J., Wejrzanowski T., Pielaszek R., Konopka K., Łojkowski W., Kurzydłowski K.J., Application of image analysis for characterization of powders, Materials Science Poland 2005, 23, 1, 79-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cf7040a-deaf-42f5-bf11-5e6b243a5ca9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.