PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified PSO Based Channel Allocation Scheme for Interference Management in 5G Wireless Mesh Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient channel management is a challenge that next-generation wireless networks need to meet in order to satisfy increasing bandwidth demand and transmission rate requirements. Non-orthogonal multiple access (NOMA) is one of such efficient channel allocation methods used in 5G backhaul wireless mesh networks. In this paper, we propose a power demand-based channel allocation method for 5G backhaul wireless mesh networks by employing NOMA and considering traffic demands in small cells, thereby improving channel utility. In this scheme, we work with physical layer transmission. The foremost aim is to mutually optimize the uplink/downlink NOMA channel assignment in order to increase user fairness. The approach concerned may be divided into two steps. First, initial channel allocation is performed by employing the traveling salesman problem (TSP), due to its similarity to many-to-many double-side user-channel allocation. Second, the modified particle swarm optimization (PSO) method is applied for allocation updates, by introducing a decreasing coefficient which may have the form of a standard stochastic estimate algorithm. To enhance exploration capacity of modified the PSO, a random velocity is included to optimize the convergence rate and exploration behavior. The performance of the designed scheme is estimated through simulation, taking into account such parameters as through put, spectral efficiency, sum-rate, outage probability, signal to-interference plus noise ratio (SINR), and fairness. The proposed scheme maximizes network capacity and improves fairness between the individual stations. Experimental results show that the proposed technique performs better than existing solutions.
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Electronics and Communication Engineering, REVA Institute of Technology and Management, Rukimini Knowledge Park, Kattigenahalli, SH 104, Srinivasa Nagar, Bangalore, Karnataka 560064, India
  • Department of Electronics and Communication Engineering, REVA Institute of Technology and Management, Rukimini Knowledge Park, Kattigenahalli, SH 104, Srinivasa Nagar, Bangalore, Karnataka 560064, India
Bibliografia
  • [1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, „A survey on 5G networks for the Internet of Things: Communication technologies and challenges", IEEE Access, vol. 6, pp. 3619-3647, 2018 (DOI: 10.1109/ACCESS.2017.2779844).
  • [2] A. Boulogeorgos et al., „Wireless terahertz system architectures for networks beyond 5G", arXiv preprint arXiv:1810.12260, 2018.
  • [3] M. A. Khan et al., „Understanding autonomic network management: A look into the past, a solution for the future", Computer Commun., vol. 122, pp. 93-117, 2018 (DOI: 10.1016/j.comcom.2018.01.014).
  • [4] T. Shuminoski, S. Kitanov, and T. Janevski, „Advanced QoS provisioning and mobile fog computing for 5G", Wirel. Commun. And Mobi. Comput., vol. 2018, article ID 2109394, 2018 (DOI: 10.1155/2018/5109394).
  • [5] U. Siddique, H. Tabassum, E. Hossain, and D. I. Kim, „Wireless backhauling of 5G small cells: Challenges and solution approaches", IEEE Wirel. Commun., vol. 22, no. 5, pp. 22-31, 2015 (DOI: 10.1109/MWC.2015.7306534).
  • [6] I. Aldmour, „Wireless broadband tools and their evolution towards 5G networks", Wirel. Personal Commun., vol. 95, no. 4, pp. 4185-4210, 2017 (DOI: 10.1007/s11277-017-4058-x).
  • [7] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, „Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges", IEEE Commun. Surveys & Tutor., vol. 19, no. 2, pp. 721-742, 2016 (DOI: 10.1109/COMST.2016.2621116).
  • [8] C. Sexton et al., „5G: Adaptable networks enabled by versatile radio access technologies", IEEE Commun. Surveys & Tutor., vol. 19, no. 2, pp. 688-720, 2017 (DOI: 10.1109/COMST.2017.2652495).
  • [9] N. Bui et al., „A survey of anticipatory mobile networking: Context-based classification, prediction methodologies, and optimization techniques", IEEE Commun. Surveys & Tutorials, vol. 19, no. 3, pp. 1790-1821, 2017 (DOI: 10.1109/COMST.2017.2694140).
  • [10] T. H. Naveen and G. Vasanth, „Qualitative study of existing research techniques on wireless mesh network", Int. J. of Adv. Comp. Sci. And Appl., vol. 8, no. 3, pp. 49-57, 2017 (DOI:10.14569/IJACSA.2017.080308).
  • [11] A. BenMimoune and M. Kadoch, „Relay technology for 5G networks and IoT applications", in Internet of Things: Novel Advances and Envisioned Applications, D. P. Acharjya and M. K. Geetha, Eds. Studies in Big Data, vol. 25, pp. 3-26. Springer, 2017 (DOI: 10.1007/978-3-319-53472-5 1).
  • [12] E. Ezhilarasan and M. Dinakaran, „A review on mobile technologies: 3G, 4G and 5G", in Proc. 2nd Int. Conf. on Recent Trends and Challen. in Comput. Models ICRTCCM 2017, Tindivanam, India, 2017, pp. 369-373 (DOI: 10.1109/ICRTCCM.2017.90).
  • [13] W. Xia, Y. Zhou, G. Yang, and R. T. Chen, „Power-balanced non-orthogonal multiple access based on virtual channel optimization", IEEE Trans. on Circ. and Syst. II: Express Briefs, vol. 67, no. 4, pp. 795-799, 2019 (DOI: 10.1109/TCSII.2019.2925270).
  • [14] M. Dighriri, G. M. Lee, and T. Baker, „Measurement and classification of smart systems data traffic over 5G mobile networks", in Technology for Smart Futures, M. Dastbaz, H. Arabnia, and B. Akhgar, Eds. Springer, 2018, pp. 195-217 (DOI: 10.1007/978-3-319-60137-3 9).
  • [15] Z. J. Ali, N. K. Noordin, A. Sali, and F. Hashim, „Fair energy-eficient resource allocation for downlink NOMA heterogeneous networks", IEEE Access, vol. 8, pp. 200129-200145, 2020 (DOI: 10.1109/ACCESS.2020.3035212).
  • [16] I. Ahmad, Z. Kaleem, R. Narmeen, L. D. Nguyen, and D.-B. Ha, „Quality-of-service aware game theory-based uplink power control for 5G heterogeneous networks", Mob. Netw. and Appl., vol. 24, no. 2, pp. 556-563, 2019 (DOI: 10.1007/s11036-018-1156-2).
  • [17] S. Han, X. Xu, X. Tao, and P. Zhang, „Joint power and subchannel allocation for secure transmission in NOMA-based mMTC networks", IEEE Syst. J., vol. 13, no. 3, pp. 2476-2487, 2019 (DOI: 10.1109/JSYST.2018.2890039).
  • [18] Y. Shi, J. Zhang, W. Chen, and K. B. Letaief, „Generalized sparse and low-rank optimization for ultra-dense networks", IEEE Commun. Magazine, vol. 56, no. 6, pp. 42-48, 2018 (DOI: 10.1109/MCOM.2018.1700472).
  • [19] N. U. Hasan et al., „Network selection and channel allocation for spectrum sharing in 5G heterogeneous networks", IEEE Access, vol. 4, pp. 980-992, 2016 (DOI: 10.1109/ACCESS.2016.2533394).
  • [20] X. Gao, O. Edfors, J. Liu, and F. Tufvesson, „Antenna selection In measured massive MIMO channels using convex optimization", In Proc. IEEE Globecom Worksh. GC Wkshps 2013, Atlanta, GA, USA, 2013, pp. 129-134 (DOI: 10.1109/GLOCOMW.2013.6824974).
  • [21] K. N. R. S. V. Prasad, E. Hossain, and V. K. Bhargava, „Energy eficiency in massive MIMO-based 5G networks: Opportunities and challenges", IEEE Wirel. Commun., vol. 24, no. 3, pp. 86-94, 2017 (DOI: 10.1109/MWC.2016.1500374WC).
  • [22] M. Hadi and R. Ghazizadeh, „Sub-channel assignment and Power allocation in OFDMA-NOMA based heterogeneous cellular networks", AEU - Int. J. of Electron. and Commun., vol. 120, article 153195, 2020 (DOI: 10.1016/j.aeue.2020.153195).
  • [23] H. Tabassum et al., „Non-orthogonal multiple access (NOMA) In cellular uplink and downlink: Challenges and enabling techniques", arXiv preprint arXiv:1608.05783, 2016.
  • [24] J. Zhu, J. Wang, Y. Huang, S. He, X. You, and L. Yang, „On optimal power allocation for downlink non-orthogonal multiple Access systems", IEEE J. on Selec. Areas in Commun., vol. 35, no. 12, pp. 2744-2757, 2017 (DOI: 10.1109/JSAC.2017.2725618).
  • [25] Y. Saito et al., „Non-orthogonal multiple access (NOMA) for cellular future radio access", in Proc. IEEE 77th Veh. Technol. Conf. VTC Spring 2013, Dresden, Germany, 2013 (DOI: 10.1109/VTCSpring.2013.6692652).
  • [26] A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, „Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials", in Proc. Int. Conf. on Wirel. Netw. and Mob. Commun. WINCOM 2015, Marrakech, Morocco, 2015 (DOI: 10.1109/WINCOM.2015.7381343).
  • [27] P. D. Diamantoulakis, K. N. Pappi, G. K. Karagiannidis, H. Xing, and A. Nallanathan, „Joint downlink/uplink design for wireless powered networks with interference", IEEE Access, vol. 5, pp. 1534-1547, 2017 (DOI: 10.1109/ACCESS.2017.2657801).
  • [28] Y. Sun, D. K. W. Ng, Z. Ding, and R. Schober, „Optimal joint Power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems", IEEE Trans. on Commun., 65, no. 3, pp. 1077-1091, 2017 (DOI: 10.1109/TCOMM.2017.2650992).
  • [29] A. Memarinejad, M. Mohammadi, and M. B. Tavakoli, „Full-duplex NOMA cellular networks: Beamforming design and user scheduling", AEU - Int. J. of Electron. and Commun., vol. 126, article 153415, 2020 (DOI:10.1016/j.aeue.2020.153415).
  • [30] P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, „Particle swarm and ant colony algorithms hybridized for improved continuous optimization", Applied Mathem. and Comput., vol. 188, no. 1, pp. 129-142, 2007 (DOI: 10.1016/j.amc.2006.09.098).
  • [31] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, „A survey of PSO-based scheduling algorithms in cloud computing", J. of Network and Sys. Manag., vol. 25, no. 1, pp. 122-158, 2017 (DOI: 10.1007/s10922-016-9385-9).
  • [32] B. Di, L. Song, and Y. Li, „Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple Access networks", IEEE Trans. on Wirel. Commun., vol. 15, no. 11, pp. 7686-7698, 2016 (DOI: 10.1109/TWC.2016.2606100).
  • [33] M. Jain, S. Soni, N. Sharma, and D. Rawal, „Performance analysis at far and near user in NOMA based system in presence of SIC error", AEU - Int. J. of Electron. and Commun., vol. 114, article 152993, 2020 (DOI: 10.1016/j.aeue.2019.152993).
  • [34] L. Lei, D. Yuan, C. K. Ho, and S. Sun, „Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation", IEEE Trans. on Wirel. Commun., vol. 15, no. 12, pp. 8580-8594, 2016 (DOI: 10.1109/TWC.2016.2616310).
  • [35] Z. Ding, R. Schober, and H, V. Poor, „On the design of MIMO-NOMA downlink and uplink transmission", in Proc. IEEE Int. Conf. on Commun. ICC 2016, Kuala Lumpur, Malaysia, 2016 (DOI: 10.1109/ICC.2016.7510759).
  • [36] M. Aldababsa and O. Kucur, „BER performance of NOMA network with majority based JTRAS scheme in practical impairments", AEU - Int. J. of Electron. and Commun., vol. 129, article 153523, 2021 (DOI: 10.1016/j.aeue.2020.153523).
  • [37] R. K. Jain et al., „A quantitative measure of fairness and discrimination for resource allocation in shared computer system", Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, 1984 [Online]. Available: https://www.cs.wustl.edu/»jain/papers/ftp/fairness.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cf6fe84-6cc6-4e14-9dca-6a994819e93e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.