Identyfikatory
Warianty tytułu
Wyroby lakierowe utwardzane radiacyjnie
Języki publikacji
Abstrakty
Due to environmental concerns, there is an increasing trend to use more environmentally friendly technologies such as radiation curing and water-based systems instead of traditional solvent-based formulations. The low limit of volatile organic compounds released into the atmosphere and reduced environmental pollution is the main driving force for radiation curing technology, with other benefits including safer maintenance, faster painting process and higher end product performance.
Ze względu na ochronę środowiska coraz częściej stosuje się bardziej przyjazne technologie, takie jak utwardzanie radiacyjne i systemy wodorozcieńczalne, zamiast dobrze znanych wyrobów na bazie rozpuszczalników. Niskie limity dotyczące lotnych związków organicznych uwalnianych do atmosfery i dążenie do zmniejszenia negatywnego oddziaływania na środowisko wpływają na rozwijanie technologii utwardzania radiacyjnego. Inne zalety tego rozwiązania to: bezpieczniejsza praca, szybszy proces malowania i wyższa jakość produktu końcowego.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
126--130
Opis fizyczny
Bibliogr. 46 poz., tab.
Twórcy
Bibliografia
- [1] J. P. Fouassier, J. F. Rabek (eds.). 1993. Radiation Curing in Polymer Science and Technology. Vol. 1: Fundamentals and Methods. London: Elsevier.
- [2] D. R. Bloch. 1994. “Acrylic Monomers for Radiation-Cured Adhesives and Coatings.” Adhesive Age 37(4): 30–34.
- [3] M. Umiński, L. M. Saija. 1995. “Acrylic Monomers for Radiation Curing.” Surface Coatings International 78(6): 244–249.
- [4] M. Umiński. 1999. „Farby i lakiery przyjazne środowisku”. Rynek Chemiczny 2: 22–23.
- [5] M. Umiński. 2008. „Nowe technologie w zdobieniu wiader i innych opakowań w firmie Plast-Box S.A.”. Opakowanie 53(1): 48–49.
- [6] C. Decker. 1987. “UV-Curing Chemistry: Past, Present, and Future.” Journal of Coatings Technology 59(751): 97–106.
- [7] M. Umiński. 1997. “Waterborne UV/EB Curing Systems.” Pigment and Resin Technology 26(3): 149–152. DOI: 10.1108/03699429710168708.
- [8] M. Müller. 2004. “A Professional Life with UV Manfred Müller on Milestones of Success in Radiation Curing.” European Coatings Journal 5: 18.
- [9] M. Manea, K. Ogemark, L. S. Svensson. 2005. “Network Controllers: Using Crosslinkers to Tailor Properties of UV Powder Coatings.” European Coatings Journal 12: 26–30.
- [10] IAL Consultants Ltd. 1990. An Overview of the European Radiation Curing Market. London.
- [11] D. Skinner. 2009. “Making Light Work for a Living: Innovations Drive Market Growth in UV/EB Applications across Europe.” European Coatings Journal 10: 18–20.
- [12] Y. Chen, N. Wang, G. Tong, D. Wu, X. Jin, X. Zhu. 2018. “Synthesis of Multiarm Star Polymer Based on Hyperbranched Polyester Core and Poly(ε-caprolactone) Arms and Its Application in UV-Curable Coating.” ACS Omega 3(10): 13928–13934. DOI: 10.1021/ACSOMEGA.8B02128.
- [13] E. Langer, M. Zubielewicz, G. Kamińska-Bach, S. Jurczyk, T. Bańcer, A. Ziółkowski. 2023. „Innowacyjne bezołowiowe farby utwardzane promieniami UV do malowania szkła użytkowego”. Ochrona przed Korozją 66(9): 274–287. DOI: 10.15199/40.2023.9.1.
- [14] B. Dunjić, S. Tasić, B. Božić. 2004. “Hyperbranched Urethane-Acrylates.” European Coatings Journal 6: 36–41.
- [15] R. Mullin. 1992. “Spotlight on Radiation Curing: Formulating for New Applications.” Chemical Week 5: 22–26.
- [16] P. Megens. 1994. “Low Viscous UV-Curable Wood Coatings.” Surface Coatings International 77: 245–249.
- [17] J. P. Fouassier, L. Simonin-Catilaz. 1995. “UV Drying: The First Industrial One- -Step Process.” European Coatings Journal 4: 272–276.
- [18] K. Efsen. 1994. “Radiation Curing Equipment”. Surface Coatings International 77: 234–242.
- [19] C. Decker, K. Moussa. 1993. “Recent Advances in UV-Curing Chemistry.” Journal of Coatings Technology 65(819): 49–57.
- [20] C. Decker, K. Moussa. 1990. “A New Class of Highly Reactive Acrylics Monomers, 1: Light-Induced Polymerization.” Die Makromolekulare Chemie, Rapid Communications 11(4): 159–167. DOI: 10.1002/marc.1990.030110404.
- [21] D. Zhao, S. Liu, Y. Wu, T. Guan, N. Sun, B. Ren. 2019. “Self-Healing UV Light-Curable Resins Containing Disulfide Group: Synthesis and Application in UV Coatings.” Progress in Organic Coatings 133: 289–298. DOI: 10.1016/j.porgcoat.2019.04.060.
- [22] T. Li, Z. P. Zhang, M. Z. Rong, M. Q. Zhang. 2019. “Self-Healable and Thiol-Ene UV-Curable Waterborne Polyurethane for Anticorrosion Coating.” Journal of Applied Polymer Science 136(26): 47700. DOI: 10.1002/app.47700.
- [23] C. Decker, F. Masson, R. Schwalm. 2004. “How to Speed up the UV Curing of Water-Based Acrylic Coatings.” Journal of Coatings Technology and Research 1(2): 127–136. DOI: 10.1007/s11998-004-0007-1.
- [24] S. Mamat, L. C. Abdullah, M. M. Aung, S. A. Rashid, M. Z. Salleh, S. Saalah, E. R. Jusoh, M. Rayung. 2023. “Synthesis and Characterization UV-Curable Waterborne Polyurethane Acrylate/Al₂O₃ Nanocomposite Coatings Derived from Jatropha Oil Polyol.” Biointerface Research in Applied Chemistry 13(2): 193. DOI: 10.33263/briac132.193.
- [25] O. Valdes-Aguilera, A. Carmack, M. de Lombard-Watts. 2007. “UV-Curable Polyurethane Acrylate Dispersions Compared to 100% Solids UV-Curable Urethane Acrylates.” Paint and Coatings Industry 23(4): 36–42.
- [26] L. M. Saija, M. Umiński. 1995. “Unsaturated Alcohols and Glycols Containing Ionizable Groups for Synthesis of Urethane Acrylate Graft Copolymer Latices.” Die Angewandte Makromolekulare Chemie 233(4069): 103–112. DOI: 10.1002/apmc.1995.052330109.
- [27] C. Croutxé-Barghorn, A. Chemtob, C. Belon. 2009. “Parallel Processing: Photocuring Combines Epoxy and Sol-Gel Reactions in a Single Step.” European Coatings Journal 10: 24–27.
- [28] J. P. Fouassier. 1994. “New Developments in Photoinitiators and Photosensitizers for Conventional and Laser Curing of Multifunctional Organic Materials.” Surface Coatings International 6: 252–258.
- [29] S. P. Pappas, J. H. Jilek. 1979. “Photoinitiated Cationic Polymerization by Photosensitization of Onium Salts.” Photographic Science and Engineering 23(3): 40–143.
- [30] J. V. Crivello. 2007. “Synergistic Effects in Hybrid Free Radical/Cationic Photopolymerizations.” Journal of Polymer Science: Part A: Polymer Chemistry 45: 3759–3769. DOI: 10.1002/pola.22126.
- [31] M. Sangermano, N. Razza, J. V. Crivello. 2014. “Cationic UV-Curing: Technology and Applications.” Macromolecular Materials and Engineering 299(7): 775–793. DOI: 10.1002/mame.201300349.
- [32] H. O. House. 1979. Nowoczesne reakcje syntezy organicznej. Warszawa: PWN.
- [33] M. Umiński. 2007. “Environment-Friendly Polymeric Binders.” Paint and Coatings Industry 23(8): 38–43.
- [34] F. D. Rector, W. W. Blount, D. R. Leonard. 1989. “Applications for Acetoacetyl Chemistry in Thermoset Coatings.” Journal of Coatings Technology 61(771): 31–37.
- [35] W. A. D. Stanssens, J. F. G. A. Jansen. 1998. Anionic Photocatalyst. US Patent 6124371.
- [36] K. Dietliker, K. Misteli, T. Jung, P. Contich, J. Benkhoff, E. Sitzmann. 2005. “Novel Chemistry for UV Coatings: Photolatent Base System Optimises Performance for Refinish Clearcoats.” European Coatings Journal 10: 20–24.
- [37] N. Dogan, H. Klinkenberg, L. Reinerie, D. Ruigrok, P. Wijnands. 2005. “Finishing in the Fast Lane: Thiol-Isocyanate UV System Speeds up Automotive Repair Coating.” European Coatings Journal 11: 36–40.
- [38] M. Visconti, M. Cattaneo. 2004. “Difunctional Photoinitiators Can Solve Migration and Odour Problems in Clearcoats and Pigmented Systems.” European Coatings Journal 5: 20–24.
- [39] C. Decker. 2005. “Linked by Light: Advances in the UV-Curing of Organic Coatings.” European Coatings Journal 7–8: 28–32.
- [40] A. Fonzé, D. Heymans, N. Henry, H. Hendrickx. 2006. “Versatile Versatate: Acrylate Esters of Glicidyl Versatate Can Outperform Conventional Monomers in UV Curing Laminating and Pressure-Sensitive Adhesives.” European Coatings Journal 1–2: 42–45.
- [41] M. Tielemans, J. P. Bleus, M. Vasconi. 2007. “Braving the Weather: A New UV-Curable Polyurethane Dispersion for Outdoor Applications on Wood.” European Coatings Journal 3: 38–42.
- [42] T. Molamphy. 2007. “Curing in a New Light: Next Generation Solid State Array UV Light Sources Outperform Conventional Arc Lamps.” European Coatings Journal 2: 38–40.
- [43] T. Jung, P. Simmendinger, W. Tobisch. 2005. “Out of the Shadows: Plasma Process Facilitates UV Curing in Three Dimensions.” European Coatings Journal 4: 138–143.
- [44] C. Vu, O. Laferté. 2006. “All Layers Count: Silica Nanoparticles in the Optimisation of Scratch and Abrasion Resistance of High Performance UV Multi-Layer Coatings.” European Coatings Journal 6: 34–38.
- [45] M. Umiński. 2023. “Core-Shell Copolymers and Hybrid Composites as Valuable Raw Materials for Industrial Coatings.” https://digitaledition.pcimag.com/november-2023/feature-uminski/https://digitaledition.pcimag.com/ november-2023/feature-uminski/ (access: 20.11.2023).
- [46] M. Umiński. 2023. „Organiczne i organiczno-nieorganiczne polimery core- -shell jako wartościowe surowce do wodorozcieńczalnych wyrobów antykorozyjnych”. Ochrona przed Korozją 66(9): 295–297. DOI: 10.15199/40.2023.9.3
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cf32517-a37e-410f-adc3-96b74bf07ed6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.