PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assesing the potential of digital terrain models for monitoring additional subsidence of communication embankments in mining areas - a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena możliwości numerycznych modeli terenu do monitorowania dodatkowych obniżeń nasypów komunikacyjnych na terenach górniczych - studium przypadku
Języki publikacji
EN
Abstrakty
EN
Today’s technologies make it possible to capture certain phenomena that were very difficult or impossible to observe in terms of classical measurements. One of them is the so-called sinking of embankments. It is common in mining areas. It consists in the additional subsidence of the embankments into the ground, above the value of the lowering of the adjacent area. It takes place primarily in the zone of horizontal tensile deformations. The paper presents the results of comparative DTM (Digital Terrain Model) analyzes from 2001, 2014, 2018 and 2021. Their aim was to assess the usefulness of DTM data for monitoring the additional sinking of the communication embankment on the example of the northern bypass of Bytom. The authors analyzed digital terrain models generated in the process of rasterization of data from ALS (Airborn Laser Scanning).
PL
Dzisiejsze technologie pozwalają wychwycić pewne zjawiska, które w ujęciu pomiarów klasycznych były bardzo trudne lub też niemożliwe do zaobserwowania. Jednym z nich jest zjawisko tzw. tonięcia nasypów. Występuje ono powszechnie na terenach górniczych. Polega na dodatkowym zagłębianiu się budowli w podłoże, ponad wartość obniżenia terenu przyległego. Ma ono miejsce przede wszystkim w strefie poziomych odkształceń rozciągających. W pracy przedstawiono wyniki analiz porównawczych NMT z lat 2001, 2014, 2018 i 2021. Ich celem była ocena przydatności danych z NMT do monitorowania dodatkowego zagłębiania nasypu komunikacyjnego na przykładzie północnej obwodnicy Bytomia. Autorzy poddali analizom numeryczne modele terenu wygenerowane w procesie rasteryzacji danych pochodzących głównie z lotniczego skanowania laserowego ALS.
Rocznik
Strony
84--96
Opis fizyczny
Bibliogr. 49 poz., fot., rys., tab., wykr.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Kwiatek J., Construction facilities on mining areas. GiG Katowice 2007, pp. 266.
  • [2] Mrozek D., Mrozek M., Fedorowicz J., The protection of masonry buildings in a mining area. Procedia Engineering, 193, International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures AMCM’2017, pp.184-191; https://doi.org/10.1016/j.proeng.2017.06.202.
  • [3] Kłosek K., Motorway pavement and earthwork structures on mining Fields, WUG 2006, bwmeta1.element.baztech-article-BSL9-0011-0003.
  • [4] Szojda L., Kapusta Ł., Numerical analysis of the influence of mining ground deformation on the structure of a masonry residential building, Archives of Civil Engineering, 2021, Vol. 67, no. 3, DOI: 10.24425/ace.2021.138054.
  • [5] Rusek J., Tajduś K., Firek K., Jędrzejczyk A., Bayesian networks and Support Vector Classifier in damage risk assessment of RC prefabricated building structures in mining areas. 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech); DOI: 10.23919/SpliTech49282.2020.9243718.
  • [6] Blachowski J., Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland), Nat Hazards 84, 997-1014 (2016), https://doi.org/10.1007/s11069-016-2470-2.
  • [7] Suh J., An Overview of GIS-Based Assessment and Mapping of Mining-Induced Subsidence. Applied Sciences. 2020; 10(21):7845. https://doi.org/10.3390/app10217845.
  • [8] Malinowska A., Hejmanowski R., Building damage risk assessment on mining terrains in Poland with GIS application. International Journal of Rock Mechanics and Mining Sciences, Volume 47, Issue 2, 2010, pp. 238-245, https://doi.org/10.1016/j.ijrmms.2009.09.009.
  • [9] Kłosek K., Discretization of the model of interaction of the track grid with its direct subgrade and the ground subgrade, 1st Ministerial Problem Seminar of the Ministry of Science and Higher Education RI-18 entitled “Model bases for shaping and maintaining rail roads”, IDiM Pol. Warsaw 1983, pp. 121-147.
  • [10] Szumierz W., Development of methods for forecasting mining deformations in railway facilities. COBiRTK works, No. 3098/16 part B (analytical), Katowice 1981.
  • [11] Szumierz W., Analysis of the impact of mining terrain stretching on the stability of railway track slopes. Materials for a scientific conference. Earth structures in mining areas, Katowice 1977.
  • [12] Litwinowicz L., Malcharek K., Rosikoń A., The impact of mining exploitation on the stability of embankment slopes and earthen dikes, OTG vol. 33/1975.
  • [13] Rosikoń A., Malcharek K., The impact of mining exploitation on the railway track in the light of research work on experimental sites. OTG Vol. 20/1972.
  • [14] Kłosek K., The influence of deformations of the mining subsoil on the cooperation of the subgrade with the railway road surface, Scientific journals of the Silesian University of Technology, Gliwice 1988.
  • [15] Kłosek K., Graftiaux M.F., Interactions des fondations des ouvrages d’art et du sol d’assiseen terrain d’exploitationminiere. “Industrie Minerale - Mines et Carrières - les Technijues”, France - Juin 1986, s. 283-292.
  • [16] Fedorowicz J., Building-soil contact issues. Part I. Criteria for modeling and analysis of basic contact issues between building structure and ground. Scientific Journals of the Silesian University of Technology, Construction series, No. 1729, issue 107, Gliwice 2006.
  • [17] Fedorowicz J., The issue of contact between the building and the ground. Part II. Criteria for creating and assessing computational models of building structure - mining substrate systems. Scientific Journals of the Silesian University of Technology, Construction series, No. 1805, issue 114, Gliwice 2008.
  • [18] Fedorowicz L., Fedorowicz J., Numerical modeling of in situ phenomena occurring in subsoil in areas of mining deformations. Land, air and water routes, No. 11, 2009, pp. 63-67.
  • [19] Bzówka J., Chmielniak S., Sternik K., The influence of mining impacts on the deformation of a road embankment based on numerical analyses. 6th International Conference “Durable and safe road surfaces”, Kielce, May 9-10, 2000, Volume 2, 23-32.
  • [20] Gryczmański M., Sternik K., Failure of the high embankment of the A4 motorway between the “Wirek” - “Batorego” junctions. XXII Scientific and Technical Conference Construction Failures 2005, Szczecin-Międzyzdroje 2005.
  • [21] Cała M., Cieślik J., Flisiak J., Kowalski M., Errors in design, and not only mining, cause damage to the highway. Modern Engineering Construction No. 5 (8), 2006, 26-31.
  • [22] Ostrowski J., Deformations of the mining area. AGH, Kraków 2015.
  • [23] Białek J., Mielimaka R., Orwat J., Determination of regressive relation binding the theoretical and observed final values of curvatures for geological and mining conditions the one of JSW coal mines. Journal of Sustainable Mining, vol. 14, issue 2, 2015, https://doi.org/10.1016/j.jsm.2015.08.011.
  • [24] Ochmański M., Modoni G., Spagnoli G., Influence of the annulus grout on the soil-lining interaction for EBP tunneling, Geotechnical aspects of underground construction in soft ground. Proceedings of the Tenth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, IS-Cambridge 2022, Cambridge, United Kingdom, 27-29 June 2022 / Elshafie Mohammed, Viggiani Giulia, Mair Robert (ed.), 2021, Routledge, s. 350-356, ISBN 978-1-032-02769-2. DOI:10.1201/9780429321559-45.
  • [25] Popiołek E., Protection of mining areas, AGH Kraków, 2009.
  • [26] Pielok J., Determination of the surface strain tensor in mining areas based on geodetic measurements. University Scientific and Didactic Publishing House of the AGH University of Science and Technology, Kraków 2005.
  • [27] Kłosek K., Litwinowicz L., Zimnoch S., Deformations of railway earth structures in mining areas in the light of model experiments and field tests. Published Silesian University of Technology, Civil Engineering Faculty, Volume 61, pp. 37-46, Gliwice 1985.
  • [28] Góral W., Szewczyk J., Application of GPS technology in precise deformation measurements. AGH, Kraków 2004.
  • [29] Lipecki T., Assessment of measurement accuracy in the context of determined terrain deformation indices. Przegląd Górniczy, Vol. 67, no. 1-2, pp. 63-67, 2011 YADDA identifier bwmeta1.element.baztech-article-AGH8-0009-0026.
  • [30] Blezień J., Jaśkowski W., Jóźwik M., Lipecki T., Preliminary results of using active geodesic net (ASG-PL) for mining surveying - Introductory results of using activegeodesic net (ASG) for surveying. Geodesy: semi-annual of the AGH University of Science and Technology; ISSN 1234-6608. 2003, vol. 9, issue 2/1, pp. 299-309.
  • [31] Lipecki T., Application of GPS-RTK technology in monitoring the deformation of the terrain surface and special objects under the influence of mining, Przegląd Górniczy 11/1999.
  • [32] Hejmanowski R., Sopata P., Stoch T., Wójcik A., Updating of mining area relief on the basis of GPS-RTK measurements,Przegląd Górniczy; ISSN 0033-216X. 2012, vol. 68, No 8, pp. 154-159.
  • [33] Stoch T., Precision of determinantion of the indicato svalues of surface deformation on the spatial observation network using GPS-RTK measurement, 15th Mining Workshops from the series “Natural hazards in mining” Czarna 4-6 june 2012 : scientific conference materials.
  • [34] Sopata P., Use of GPS-RTK method to measure the surface displacements of mining areas, Przegląd Górniczy 2012, vol. 68, No. 7, pp. 104-109.
  • [35] Siejka Z., The use of GNSS measurements to determine the coordinates of the basic implementation network in mining impact areas. Archive of photogrammetry, cartography and remote sensing, vol. 19, 2009.
  • [36] Maciaszek J., Gawałkiewicz R., The use of laser scanning in the diagnosis of objects affected by mining, Geodesy (AGH semi-annual) 2006.
  • [37] Popiołek E., Sopata P., Possibilities of using the InSAR method in hazard monitoring in mining areas. 7th Scientific and Technical Conference “Environmental Protection in mining areas”, Szczyrk 4-6.06.2008.
  • [38] Polanin P., Monitoring land surface deformations using airborne laser scanning on the example of the city of Bytom, Przegląd Górniczy, 2017, pp 22-30.
  • [39] Kuzia K., Application of airborne laser scanning in monitoring of land subsidence caused by underground mining expoloitation, Geoinform. Pol. 2016, pp. 7-13.
  • [40] Blachowski J., Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland). Nat Hazards 84, 997-1014 (2016), https://doi.org/10.1007/s11069-016-2470-2.
  • [41] Suh J., An Overview of GIS-Based Assessment and Mapping of Mining-Induced Subsidence. Applied Sciences. 2020; 10(21):7845. https://doi.org/10.3390/app10217845.
  • [42] Malinowska A., Hejmanowski R., Building damage risk assessment on mining terrains in Poland with GIS application. International Journal of Rock Mechanics and Mining Sciences, Volume 47, Issue 2, 2010, pp. 238-245, https://doi.org/10.1016/j.ijrmms.2009.09.009.
  • [43] Tajduś K., Misa R., Influence of underground mining operation on highways - domestic and foreign experience, Przegląd Górniczy 2014, nr 5, s. 39-47 ISSN: 0033-216X.
  • [44] Kapusta Ł., Szojda L., The role of expansion joints for traditional buildings affected by the curvature of the mining area. Enginnering Failure Analisys, vol. 128, 10.2021, https://doi.org/10.1016/j.engfailanal.2021.105598.
  • [45] Jaśkowski W., Measurement report: Deformation measurements in mining areas Bytom - IIIZG I Bobrek Miechowice I, report 28, 08.2020.
  • [46] Knothe S., Project of classification of mining areas from the point of view of suitability for construction purposes. Przegląd Geodezyjny, R. 9. Nr 4, 1953.
  • [47] Tong L., Leo L., Amatya B. et al., Risk assessment and remediation strategies for highway construction in abandoned coal mine region: lessons learned from Xuzhou, China. Bull EngGeolEnviron 75, 1045-1066 2016. https://doi.org/10.1007/s10064-015-0760-7.
  • [48] Pilecka E., Szwarkowski D., Stanisz J., Blockus M., Analysis of a Landslide on a Railway Track Using Laser Scanning and FEM Numerical Modelling. Appl. Sci. 2022, 12, 7574. https://doi.org/10.3390/app12157574.
  • [49] Sobura S., Calibration of the low-cost UAV camera on a spatial test field, Geodesy and Cartography, Volume 48 Issue 3, pp. 134-143, https://doi.org/10.3846/gac.2022.16215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cf0f46e-6a22-4c75-91be-ea4eb2adcc3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.