PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of solitary wave in non-uniform fiber system with high-order nonlinear effects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ultra-short pulse propagation in a non-uniform fiber system is investigated based on the variable coefficient coupled higher-order nonlinear Schrödinger equation with the dispersion gain and nonlinear gain terms. By using the ansatz method and the split-step Fourier method, we get the exact solitary wave solution, with which the transmission process of the solitary wave is studied. Furthermore we obtain the stability of the solitary wave under finite initial perturbations. The interaction between two neighboring solitary waves is also studied.
Czasopismo
Rocznik
Strony
273--284
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • College of Physics and Electronics Engineering of Shanxi University, Taiyuan, 030006, P.R. China
autor
  • College of Physics and Electronics Engineering of Shanxi University, Taiyuan, 030006, P.R. China
autor
  • College of Physics and Electronics Engineering of Shanxi University, Taiyuan, 030006, P.R. China
Bibliografia
  • [1] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, New York, 1995, pp. 188–208.
  • [2] HASEGAWA A., KODAMA Y., Solitons in Optical Communications, Oxford University Press, Oxford, 1995, pp. 153–161.
  • [3] MOLLENAUER L.F., STOLEN R.H., GORDON J.P., Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45(13), 1980, pp. 1095–1098.
  • [4] CHAO-QING DAI, RUI-PIN CHEN, YUE-YUE WANG, YAN FAN, Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials, Nonlinear Dynamics 87(3), 2017, pp. 1675–1683.
  • [5] CHAO-QING DAI, JIU LIU, YAN FAN, DING-GUO YU, Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality, Nonlinear Dynamics 88(2), 2017, pp. 1373–1383.
  • [6] CHAO-QING DAI, YU WANG, JIU LIU, Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrödinger equation, Nonlinear Dynamics 84(3), 2016, pp. 1157–1161.
  • [7] QIN ZHOU, Optical solitons in the parabolic law media with high-order dispersion, Optik – International Journal for Light and Electron Optics 125(18), 2014, pp. 5432–5435.
  • [8] QIN ZHOU, Analytical 1-solitons in a nonlinear medium with higher-order dispersion and nonlinearities, Waves in Random and Complex Media 26(2), 2016, pp. 197–203.
  • [9] GEDALIN M., SCOTT T.C., BAND Y.B., Optical solitary waves in the higher order nonlinear Schrödinger equation, Physical Review Letters 78(3), 1997, pp. 448–451.
  • [10] KRUGLOV V.I., PEACOCK A.C., HARVEY J.D., Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients, Physical Review Letters 90(11), 2003, article ID 113902.
  • [11] QIN ZHOU, QIUPING ZHU, BISWAS A., Optical solitons in birefringent fibers with parabolic law nonlinearity, Optica Applicata 44(3), 2014, pp. 399–409.
  • [12] PANOIU N.-C., MIHALACHE D., MAZILU D., MEL’NIKOV I.V., AITCHISON J.S., LEDERER F., OSGOOD R.M., Dynamics of dual-frequency solitons under the influence of frequency-sliding filters, third-order dispersion, and intrapulse Raman scattering, IEEE Journal of Selected Topics in Quantum Electronics 10(5), 2004, pp. 885–892.
  • [13] LV TINGTING, XIAO YAN, Propagating of the combined solitary wave in birefringence fiber, Acta Sinica Quantum Optica 19, 2013, pp. 351–357.
  • [14] RUIYU HAO, LU LI, ZHONGHAO LI, GUOSHENG ZHOU, Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients, Physical Review E 70, 2004, article ID 066603.
  • [15] XIAOJUAN SHI, LU LI, RUIYU HAO, ZHONGHAO LI, GUOSHENG ZHOU, Stability analysis and interaction of chirped femtosecond soliton-like laser pulses, Optics Communications 241(1–3), 2004, pp. 185–194.
  • [16] JUANFEN WANG, LU LI, ZHONGHAO LI, GUOSHENG ZHOU, MIHALACHE D., MALOMED B.A., Generation, compression and propagation of pulse trains under higher-order effects, Optics Communications 263(2), 2006, pp. 328–336.
  • [17] ZHONGHAO LI, LU LI, HUIPING TIAN, GUOSHENG ZHOU, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Physical Review Letters 84(18), 2000, pp. 4096–4099.
  • [18] GUO ZEDONG, LV TINGTING, ZHANG JIAN, XIAO YAN, Impact of fifth-order non-Kerr effect on the evolution of optical pluse in the fiber amplifier, Journal of Quantum Optics 21, 2015, pp. 44–50.
  • [19] HASEGAWA A., Self-confinement of multimode optical pulse in a glass fiber, Optics Letters 5(10), 1980, pp. 416–417.
  • [20] WEN-RONG SUN, BO TIAN, YU-FENG WANG, HUI-LING ZHEN, Dark single- and double-hump vector solitons of the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode fibers, Optics Communications 335, 2015, pp. 237–244.
  • [21] SASA N., SATSUMA J., New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, Journal of the Physical Society of Japan 60(2), 1991, pp. 409–417.
  • [22] JINPING TIAN, GUOSHENG ZHOU, Chirped soliton-like solutions for nonlinear Schrödinger equation with variable coefficients, Optics Communications 262(2), 2006, pp. 257–262.
  • [23] FANG FANG, YAN XIAO, Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg–Landau equation with variable coefficients, Optics Communications 268(2), 2006, pp. 305–310.
  • [24] TRIKI H., AZZOUZI F., GRELU P., Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms, Optics Communications 309, 2013, pp. 71–79.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ceba6ca-b6b2-454d-9651-123a2424573f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.