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ABSTRACT. The study presents a compatibility analysis of gravimetric observations with
passive microwave observations. Monitoring the variability of soil water content is one of the
essential issues in climate-related research. Total water storage changes (∆TWS) observed by
Gravity Recovery and Climate Experiment (GRACE), enables the creation of many applications
in hydrological monitoring. Soil moisture (SM) is a critical variable in hydrological studies.
Advanced Microwave Scanning Radiometer (AMSR-E) satellite products provided unique
observations on this variable in near-daily time resolutions. The study used maximum covariance
analysis (MCA) to extract principal components for ∆TWS and SM signals. The analysis
was carried out for the global area, dividing the discussion into individual continents. The
amplitudes of gravimetric and microwave signals were computed via the complex empirical
orthogonal function (EOF) and the complex conjugate EOF* to determine the regions for detailed
comparison. Similarities and differences in signal convergence results were compared with land
cover data describing soil conditions, vegetation cover, urbanization status, and cultivated land.
Convergence was determined using Pearson correlation coefficients and cross-correlation. In
order to compare ∆TWS and SM in individual seasons, ∆TWS observations were normalized.
Results show that naturally forested areas and large open spaces used for agriculture support
the compatibility between GRACE and AMSRE observations and are characterized by a good
Pearson correlation coefficient >0.8. Subpolar regions with permafrost present constraints for
AMSR-E observations and have little convergence with GRACE observations.
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1. INTRODUCTION

Soil moisture (SM) is a critical hydrologic state variable of the land that crosses the interfaces
of several disciplines, of significant importance for numerous applications for meteorology,
hydrology, climatology, and ecology (Robinson et al., 2008). Small changes in gravity measured
from space also deduced water mass fluctuations. Launched in March 2002 twin-satellite
system Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004b) and GRACE
Follow-On (GRACE-FO) (Flechtner et al., 2016) provided unique information regarding gravity
changes caused by the mass transport over the Earth’s surface. Changes in total water storage
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(∆TWS) (Wahr et al., 1998) show the Earth’s mass change on a near-monthly timescale.
The derivative of the TWS signal is TWS anomaly (TWSA), understood as a combined
monthly averaged water storage change by removing the long-term average divided by standard
deviation. TWSA corresponds to the sum of all above and below surface water storage, including
SM, canopy water, lakes, rivers, and groundwater. The importance of SM and ∆TWS for
understanding the Earth’s water cycle, and the factors affecting it over the years, has been
considered in many studies individually.

The influence of estimating spatial and temporal variations of SM on climate changes was
described in multiple studies (Betts et al., 1994, Engman, 1992, Entekhabi et al., 1994, Fast
and McCorcle, 1991, Jackson et al., 1987, Petropoulos et al., 2014, Saha, 1995, Topp et al.,
1980). Spatial and temporal variability of water was well documented in previous work for SM
(Crow et al., 2012, Famiglietti et al., 2008, Vereecken et al., 2014) and ∆TWS (Landerer and
Swenson, 2012, Tapley et al., 2004a, Zhao et al., 2017). From a hydrological point of view,
analysis of spatiotemporal patterns of SM and ∆TWS observations is essential to understanding
their behavior. In literature, existing methods describe variability only in the spatial domain
(Haining et al., 2010, Khaki et al., 2017) or only in the temporal domain, based on time series
analysis (Fu, 2011, Sprott and Sprott, 2003, Vishwakarma et al., 2021). Several methods can be
found in the literature that analyzes ∆TWS and SM space and time domains together such as
temporal stability analysis (TSA) (Martı́nez-Fernández and Ceballos, 2005, Wang et al., 2018),
triple collocation (TC) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin
and Park, 2021), and empirical orthogonal functions (EOFs) (Eom et al., 2017, Lei et al., 2012,
Navarra and Simoncini, 2010, Schrama et al., 2007, Yoo and Kim, 2004). Whether the analysis
is temporal or spatiotemporal, researchers in previous work have indicated the importance of SM
as a component of the ∆TWS signal.

Water content in near-surface soil layers is a significant component of the ∆TWS signal observed
by the GRACE mission. There have been many significant studies examining the relationship
between SM and ∆TWS. A joint comparison of the remote sensing retrieval products’ metric
entropy and fluctuation complexity was considered in (Kumar et al., 2018). The satellite products
of Advanced Microwave Scanning Radiometer (AMSR-E), Advanced Scatterometer (ASCAT),
Soil Moisture and Ocean Salinity (SMOS), and Advanced Microwave Scanning Radiometer 2
(AMSR2) show significant noise (high entropy, low complexity), except Soil Moisture Active
Passive (SMAP) is slightly noisy and more informative. The correlation greater than 0.7 between
TWSA and SM data was shown in previous work (Abelen and Seitz, 2013, Crow et al., 2017,
Swenson et al., 2008b). Expanding the shallow groundwater variation under the SM root zone
is an essential issue in scientific research. Since using microwave satellites may be a possible
way to isolate groundwater storage (GWS) variations from the GRACE signal (Frappart and
Ramillien, 2018, Yeh et al., 2006), a significant area of research is the possibility of using
microwave observations to determine SM.

Microwave remote sensing observations have been applied for the determination of SM (Babaeian
et al., 2019). Active and passive microwave remote sensing provides an observation of SM at
global and regional scales (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr et al.,
2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013). It helps in
much scientific research in hydrology and climate studies and gives an opportunity to understand
environmental changes (Njoku and Entekhabi, 1996). GRACE ∆TWS and remote sensing
microwave SM observations have recently been used to improve SM and GWS simulations
(Tangdamrongsub et al., 2022, Tian et al., 2017).
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One of the essential microwave sensors providing SM data was the AMSR-E mission. Owing to
the long joint period in orbit during the operation of GRACE and AMSR-E missions, numerous
previous studies have considered comparing SM from AMSR-E and ∆TWS signals from these
sensors. Comparisons between the AMSR-E surface wetness index (ASWI) and the GRACE
drought severity index (DSI) were shown in the previous work (Du et al., 2019). The indicated
comparisons showed robust correlations in regions in the United States (R higher than 0.7
for 29 percent of the area) during the summer months (June–August) from 2002 to 2017 for
regions where a semiannual temporal lag between fast surface water changes and the slower
GWST was considered. The study explores multivariate data assimilation (DA) using synthetic
∆TWS from GRACE and synthetic AMSR-E passive microwave brightness temperature spectral
differences (dTb) in case estimation of snow water equivalent (SWE) over snow-covered terrain
was presented by Wang et al. (2021) and Wang and Forman (2020). In a previous study (Seo et al.,
2010), the authors propose methods to estimate solid precipitation accumulation in winter in the
northern Arctic region. Based on the GRACE and AMSR-E, winter season solid precipitation
accumulation was estimated. In the second step, estimated values was compared with the
traditional estimations from the Global Precipitation Climatology Project (GPCP) and Climate
Prediction Center’s Merged Analysis of Precipitation (CMAP). Correlation, time shift, and
principal component analyses of SM from the WaterGAP Global Hydrology Model (WGHM)
and the satellite sensors AMSR-E and ASCAT to total water storage variations from the satellite
gravity mission GRACE in the area of the La Plata Basin in South America were provided by
Abelen et al. (2015). Regional and global variations in SM from satellite sensor AMSR-E and
GRACE was also considered in Abelen et al. (2011). Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004) product was used to evaluate AMSR-E observations over central
Tibetan Plateau (Chen et al., 2013). To effectively catch drought disasters in the Guangdong
province of southern China in 2004–2005, 2007, and 2009 SM from AMSR-E was used (Chen
et al., 2012). The highest SM variability in the surface soil layer can be observed because
of meteorological and environmental interactions such as precipitation, temperature changes,
porosity, topography, vegetation processes, and human factors.

Although many studies have been performed on evaluating extreme hydrological events using
GRACE and AMSR-E, there is a gap in the published literature concerning ∆TWS and SM
signal convergence considering land cover data described soil conditions, vegetation cover,
urbanization status, and cultivated land. Since the information collected by gravimetric sensors
has a lower temporal frequency and spatial resolution than microwave measurements, it is crucial
to investigate the convergence of these signals. The key question posed in the article is: is it
possible to use the information contained by sensors characterized by higher noise and signal
variance, such as AMSR-E, in the global analysis of ∆TWS variability from GRACE satellites?
In work, it was decided to present the similarities and differences in the Earth’s water resource
measurements. This article analyzes the spatiotemporal variations of SM and ∆TWS in the
context of the similarity pattern comparison. The study used maximum covariance analysis
(MCA) to extract principal components for ∆TWS and SM signals.

2. DATA AND METHODS

2.1. Data

GRACE data is available at https://podaac-tools.jpl.nasa.gov/(accessed on
01.06.2022) distributed by the Center for Space Research (CSR). The spatial resolution of
the GRACE data included in the study is approximately 300 km x 300 km. Surface and
subsurface mass change data are based on the RL06 standards (Dahle et al., 2013) at the L2
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data processing level. Processing GRACE data included replaced coefficient C20 representing
gravimetric flattening of the Earth (Swenson et al., 2008a) by Satellite Laser Ranging (SLR)
observation (Cheng and Tapley, 2004) and filtered out the correlated error (Swenson and Wahr,
2006) using a modified de-correlation filter (Chen et al., 2007). Processing GRACE data also
included excluding the static part of the gravity field using GGM05C model (Ries et al., 2016).
During processing GRACE data the degree-1 coefficients (Geocenter) are estimated using the
methods from Sun et al. (2016) and Swenson et al. (2008b). A glacial isostatic adjustment (GIA)
correction has been applied based on the ICE6G-D model from Peltier et al. (2018).

The Advanced Microwave Scanning Radiometer for the Earth Observing System is a passive
multiband sensor of NASA’s Earth Observing System Aqua satellite. AMSR-E uses the X-band
and C-band to measure the water cycle and SM content retrievals corresponding to the depth of
(2.5–3.75cm) and (3.75–7.5cm), respectively. Owing to the fact that radio frequency interference
(RFI) in the C-band (6.9 and 10.7 GHz), the X-band has been extensively used for SM retrieval
(Njoku et al., 2005). AMSR-E dataset is available as daily files at https://disc.gsfc.
nasa.gov/(accessed on 01.06.2022). AMSR-E/Aqua surface SM ascending V002 is a Level
3 (gridded) data set with a daily frequency and spatial resolution of about 25 km by 25 km. Land
surface SM measurements is derived from passive microwave remote sensing data using the
Land Parameter Retrieval Model (LPRM). The LPRM is based on a forward radiative transfer
model to retrieve surface SM and vegetation optical depth. The dataset contains data from May
2002 to December 2011. AMSR-E on the NASA EOS Aqua satellite discontinued producing
data in October 2011 due to an issue with the rotation of its antenna (van der Vliet et al., 2020).
Only descending tracks were used because of the much better stability of nighttime soil, canopy,
and air temperatures in this study (De Jeu et al., 2008, Draper et al., 2009, Liu et al., 2012, 2011,
Owe et al., 2001).

The intersection of the GRACE and AMSR-E sensors datasets was selected for analysis. The
time range of the selected data for this study was chosen to cover the maximum part intersection
of existing GRACE and AMSR-E datasets. The dataset in the analysis contains data from 2002
to 2012 from both missions.

2.2. Methodology

Data preparation involved averaging with moving window data collected by the AMSR-E sensor
over the GRACE epochs. As the compared sensors have different spatial resolutions, the data
from AMSR-E were linearly interpolated on the GRACE resolution. The values for ∆TWS
observed by GRACE and AMSR-E have different amplitudes. To be able to compare these results
to each other, it was decided to normalize data for each season and then compare the normalized
values for given seasons to minimize the effects of seasonality. Volumetric soil water content
collected by AMSR-E sensor is the volume of water per unit volume of soil [m3

water/m
3
soil]

(Njoku et al., 2003). Volumetric water content (VSM) can be expressed as a ratio, percentage, or
depth of water per soil (assuming a unit surface area). As the VSM data from ARMS-E were
already presented as percentages, normalization was provided only at ∆TWS from GRACE.
Since results of retrieving global surface SM from GRACE depend on used SM extreme values,
the authors of Sadeghi et al. (2020) proposed used extreme values from overlapping SMAP
and GRACE timelines from 2015 to 2017. This research used maximum and minimum values
from the overlapping periods of GRACE and AMSR-E from 2002 to 2011. Normalization was
performed according to the following equation:

TWSnorm =
TWS − TWSmin

TWSmax − TWSmin
(1)
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To reveal the similarities and differences between the values, both sensor signals were grouped
for the winter, spring, summer, and autumn months. Moreover, a complementary correlation
analysis was performed to assess the level of agreement between different data sources:

corr(tws),(sm) =

∑n
i=1(TWSi − µtws)(SMi − µsm)√∑n
i=1(TWSi − µtws)2(SMi − µsm)2

(2)

where µ is the mean value, and σ its standard deviation. However, some phase shifts are observed
between the signals in the selected values delivered by analyzed sensors. Therefore, the analysis
of signal similarity was completed with the normalized cross-correlation (xcorr) coefficients:

xcorrtws(t),sm(t+τ) =
E[(TWSt − µtws)(SMt+τ − µsm)]

σtwsσsm
(3)

where E is the expected value of the given expression and τ is the time shift. In this case, a
maximum 6 months interval of possible lags between the examined time series was determined.
Anomalies for SM were also determined to indicate the similarities and differences with TWSA
resulting from extreme environmental changes. TWSA and SM anomalies (SMA) were calculated
by the following equations:

SMA(t) =
SM(t) − µsm

σsm
(4)

TWSA(t) =
TWS(t) − µtws

σtws
(5)

Intense spatial averaging filters with a high radius of smoothing kernel can cause signal loss,
known as ”leakage error” (Longuevergne et al., 2010, Swenson and Wahr, 2002). Filtering
decreases the spatial resolution of the GRACE observation, making it challenging to identify the
mass water signal of the main stem. The EOF analysis is a method for GRACE data to separate
signals from signal noise. It is beneficial in cases such as problems with loss of geophysical signal
with diminishing spatial resolution during filtration (Wouters and Schrama, 2007). The use of this
method is justified in the case of comparison of microwave data with higher spatial resolution and
greater time frequency of measurements than gravimetric satellite measurements. Concerning
the EOF’s of standard MCA (Rieger et al., 2021), the spatial amplitude (As) provides a means to
understand which regions contribute the most to the given mode. The spatial amplitude is easily
computed via the complex EOF and the complex conjugate EOF*:

As = 2
√
EOF × EOF ∗ ∈ C (6)

We can determine exactly how the individual regions are dynamically linked to each other. Phase
shifts between these two cases are signals that can be combined into one mode with standard
MCA by the following equation:

θ = tan(
R(EOF )

I(EOF )
)
−1

(7)

3. RESULTS

The surface soil layer commonly shows the most considerable SM variability due to the
relations with meteorological, environmental, and anthropogenic factors such as porosity,
topography, vegetation, precipitation, and temperature decreasing with depth. To analyze
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land cover conditions, the Harmonized World Soil Database was used (Fischer et al., 2008) from
https://www.fao.org/soils-portal/data-hub/(accessed on 01.06.2022). Land
cover data contain datasets based on an iterative calculation procedure to estimate land cover
class weights. It was consistent with combined Food and Agriculture Organization (FAO) land
statistics and spatial land cover characteristics. Data was collected from remote sensing data,
allowing intepretation and classification of land cover shares in 5’ by 5’ latitude/longitude grid
cells. The class weights used in the study determine the presence of arable land and forests for
each land cover class. As the water content strongly depends on the soil porosity, the analysis
included classes presenting soil conditions in terms of oxygen content.

Figure 1. Land cover data of forest land (a), oxygen availability to roots (b), total cultivated land (c),
and share of build-up land (d) based on Harmonized World Soil Database

Drainage characteristics of soils broadly define oxygen availability in soils. The determination of
soil drainage classes is based on procedures developed at FAO. These procedures consider soil
type, texture, terrain slope, and phases with mean proportion of water, air, and solids in soil. This
publication contains characteristics of forest land, oxygen availability to roots, total cultivated
land, and share of build-up land in Figure 1.

Figure 2. Seasonal patterns of ∆TWS (a), SM from band X (b),
and SM from band C (c) grouped by month over time
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Figure 3. Average SM from AMSR-E and ∆TWS from GRACE
grouped by latitude (a) and longitude (b)

The SM and ∆TWS variables are characterized by high variability over time. The main
components are related to seasonal factors included and the occurrence of dry and rainy seasons.
This decline over the years is presented in Figure 2. The figure clearly shows the negative trend
of ∆TWS value over the years. There are no similarities between the averaged SM and ∆TWS
observations for a given month. Since the cyclic signal can be reset by cyclical phenomena
occurring in a given area, the article presents averaged anomalies concerning time and latitude.

In order to characterize the values collected by gravimetric and microwave sensors, the averaged
values of the observation epochs in the years 2002–2011 were determined concerning the latitude
and longitude, respectively, as shown in Figure 3. Mean anomalies and standard deviation of
anomalies in time over the latitude are presented in Figure 4. Figure 4 a) c) e) show an increase in
the average values of TWSA and SMA in 2009–2011 for latitudes 0–20◦S with a slight standard
deviation for these latitudes in the given years. Both sensors picked up the same anomaly in these
areas. Time series analyses in this area can be characterized by high convergence. For latitudes
20–40◦N, we observe a significant TWSA anomaly that was not captured by the AMSR-E
sensors. In the years 2003–2005, we observed a significant standard deviation of anomalies,
which indicates a large scatter of observations and substantial variability, which was not captured
when determining the average SMA values.
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Figure 4. GRACE (a,b) and AMSR-E (c,d,e,f) average anomaly (a,c,e) and standard deviation (b,d,f)
grouped by latitude over time

As the data on the water content in the ground shows the cycle of seasonal changes in the
groundwater level, the average values were compared separately for each season of the year.
The analysis was divided into the C and X bands for the SM observation. After normalizations
of ∆TWS, ∆TWS and SM signals were grouped for the winter, spring, summer, and autumn
seasons. Where winter months are marked as December, January, February (DJF), spring as
March, April, May (MAM), summer as June, July, August (JJA), and autumn as September,
October, and November (SON).
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Figure 5. GRACE ∆TWS (a,d,g,j) and AMSR-E band C (b,e,h,k) and band X (c,f,i,l) SM averaged
and normalized values grouped by seasons DJF (a,b,c), MAM (g,h,i), JJA (j,k,l) and SON (j,k,l)

Figure 6. Pearson correlation coefficient between SM from band X and C from AMSR-E (a),
∆TWS from GRACE and SM from band C from AMSR-E (b),
∆TWS from GRACE and SM from band X from AMSR-E (c)

Data from the C- and X-ranges are very similar. However, they are visible in the saturation of the
SM parameter. In Figure 5, higher values of VSM in the areas of Amazonia can be noticed for
the C- range and the latitude of 60–70 degrees. When comparing the percentages of GRACE and
AMSR-E, there are apparent differences. Some of them may be due to data noise in GRACE.
Theoretically, all observations from the Sahara area should be close to zero due to the near-zero
water content in that area. However, variations in the water content around Lake Chad are
observed (Boy et al., 2012), which partially explain this effect. More similarities can be seen
between the C-band and the GRACE data, especially in the equatorial regions.

Often long-term microwave SM datasets, such as the Climate Change Initiative (CCI), based
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on C- and X-band observations, are typically masked over densely vegetated areas due to the
soil signal’s strong attenuation by the vegetation signal canopy (Dorigo et al., 2011, Liu et al.,
2011). It is worth emphasizing here that the X-band penetrates only the surface layer, the C-band
a bit deeper, into with highly dense vegetation. Both bands cannot penetrate the soil in some
cases (El Hajj et al., 2018). Pearson’s correlation coefficient for the tested signals is presented in
Figure 6.

Significant values of humidity in the X- and C-bands and low coefficients of correlation with
GRACE data observed in the northern regions of the globe, are strongly related to the permafrost
region. Data from this area deviates significantly in quality from other observations. No reduced
correlations can be seen in forest areas during the comparison of the water content obtained
from gravimetric and microwave sensors. The central part of Europe and the eastern regions of
China are mainly urbanized areas. There we observe a negative correlation between GRACE
and AMSR-E sensors. The anthropogenic factor related to the urbanization of space strongly
influences the quality of observation (Ahmed et al., 2014, Chen et al., 2019, Wang et al., 2017).
A high rate of urbanization also characterizes the Indian subcontinent. Moreover, over 60%
of the area is arable land, which, due to the large number of people living in the region, is
necessary to produce the right amount of food. Owing to the large open area and the lack of
limitations in oxygen availability in the root zones, we can observe a significant amplitude of the
SM signal. Phase compliance contributes to a high correlation in this area despite the progressive
urbanization of the area, in particular in the X-band. The cultivated areas worldwide showed
highly coherent GRACE and AMSR-E signals for GRACE and AMSR-E observations. The open
areas do not have barriers or limitations for rainfall, which allows water to penetrate the root
zone. The only exception is the eastern part of Europe, for which the overlapping of urbanization
factors and soil constraints on oxygen content, and thus lower soil porosity, slows down water
penetration into the soil. This causes a phase shift for the observed signals manifested by the
negative correlation coefficient in this area.

EOF method is effective due to its capacity to find spatial correlation in spatiotemporal data.
∆TWS retrieved from the GRACE and SM retrieved from AMSR-E missions are decomposed
using the EOF method to extract the signal, mainly describing the river discharge along the main
gravity stream. Before determining the EOF, the linear trend was removed from the observations
to eliminate the bias. Applying orthogonal decomposition MCA to geophysical datasets permits
extracting common dominant patterns between two variables. Regions with the same color are
in phase, that means their time series correlate with each other, while regions whose color is
different are anticorrelated as shown in Figure 8 and Figure 9.
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Figure 7. Dominant spatial pattern of water variability presended by decomposition of signal using EOF
for ∆TWS from GRACE (a,d,g) and SM from AMSR-E (b,c,e,f,h,j). The first spatial pattern (EOF1)

(a,b,c), the second spatial pattern (EOF2) (d,e,f), and the third spatial pattern (EOF3) (g,h,j)

Figure 8. EOF signal amplitude for ∆TWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c)

Figure 9. EOF signal phase shift for ∆TWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c)
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4. DISCUSSION

The preservation of the flow of subsurface waters is a significant regional issue, depending on
the climate determining the amount of rainwater, the topography, the arrangement of permeable
layers, and the presence of river sources. In this part of the article, regional studies were carried
out for selected river basins with the most significant area by selecting cases for all continents.
Regional analyses appear in earlier articles by Vishwakarma et al. (2021), where time series
analysis was carried out for major river basins. In this article, scientists capture significant dips
and identify constraints due to too short an observation period using the trend to variability ratio
(TVR) metric. This section focuses on the reasons for similarities and differences in gravimetric
and microwave signals in selected areas. The observations provided by the GRACE mission
are characterized by a significantly lower spatial resolution than microwave observations. The
application of grouping to the studied signals within rivers allows for finding patterns resulting
from minimizing errors resulting from noise or artifacts of the filtration process. For each
continent, a set of rivers with the largest area and different land cover features and different
latitudes was selected, thus eliminating bias in the dataset sample. For selected river basins,
Pearson’s correlation coefficients and cross-correlation, taking into account the phase shift
calculated according to formula (2) and presented in Figure 10 and Figure 11, were determined.

Figure 10. Pearson correlation over selected rivers basin between ∆TWS from GRACE and SM
from band X from AMSR-E (a) and ∆TWS from GRACE and SM from band C from AMSR-E (b)

Figure 11. Cross-correlation over selected rivers basin between ∆TWS from GRACE and SM from band
X from AMSR-E (a) and ∆TWS from GRACE and SM from band C from AMSR-E (b)

Examples of ∆TWS and SM time series and TWSA and SMA anomalies are shown in Figure
12.
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Figure 12. River basin time series containing ∆TWS and SM (a,c,e,g,i,k,m,o,q,s,u,w), TWSA and SMA
(b,d,f,h,j,l,n,p,r,t,v,x) for European (a,b,c,d), North America (e,f,g,h), South America (i,j,k,l),

Asian (m,n,o,p), African (q,r,s,t,w,x), and Australian (u,v) rivers

4.1. Europe

The analysis shows that the size of the river basin is not directly related to the differences in
GRACE and AMSR-E signals. Large European rivers, such as the Danube and the Vistula,
show the mutual shift of hydrological signals for gravimetric and microwave remote sensors
as can be seen in Figure 12 a), c). There is a more significant variance in the signal for
observations from the X- and C-bands than in GRACE observations. Therefore, the determined
anomalies are characterized by high noise for these ranges. Similar to the analysis performed in
Kuczynska-Siehien et al. (2019), the GRACE and AMSR-E sensors pick up an anomaly related
to the 2010 hydrological flood. However, contrary to the cited article, the SM determined from
AMSR-E indicates the occurrence of anomalies in the years 2007–2009, which is not recorded
in the GLDAS models. The snowfall in these regions during the months of DJF indicates a
lower moisture content in the soil, while GRACE sensors capture the mass contained in the snow
equivalent. This is explained by the method used to process AMSR-E data. Under frozen surface
conditions, the dielectric properties of the water change dramatically. Therefore, the method
assigns all pixels where the surface temperature is observed to be at or below 273 K with an
appropriate data flag (Holmes et al., 2009).

4.2. Africa

The Nile basin shows a very high agreement between GRACE and AMSR-E signals in both
X- and C-bands for the ∆TWS and SM values and their anomalies. The Pearson correlation
coefficient between these variables is greater than 0.8 for this region. The lack of soil constraints
and little human intervention in the form of agricultural or urban activities contribute to the
consistency of observations (Gossel et al., 2004). The percentage of arable land with additional
irrigation is less than 5% (Villholth, 2013). In the case of the Nile, a significant factor influencing
the changes in ∆TWS is surface runoff. The weather extremes and climatic variances observed
over the years using gravimetric observations indicate the high sensitivity of these sensors to
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extreme phenomena such as droughts (Scanlon et al., 2022, Seka et al., 2022a,b). The GRACE
and AMSR-E sensors catch the 2005 and 2010 drought anomalies, shown in Figure 12 t). Similar
results were also described by Seka et al. (2022b) using meteorological drought indicators and a
water storage deficit index (WSDI) occurring at the source of the Nile in the Turkana, Victoria,
and Tanganyika lakes.

The Congo River basin, known as Zaire, is over 60% covered by tropical forests. Crops account
for only 10% of the area. The correlation of gravimetric and microwave signals is lower than at
the same latitude for the Amazon basin. In this case, data collected by the AMSR-E mission
detects two seasonal signal peaks, while GRACE usually has only one, as presented in Figure 12
q), r). The X-band observations for shallow soil layers do not detect a split between longer and
shorter rainfall. At the same time, the C-band distinguishes subeasonal changes more like the
GRACE observations. Despite the lack of soil constraints, such a large area affected by changes
in precipitation caused by the movement of circulation cells poses a challenge for scientists in
interpreting ∆TWS and SM observations.

The Zambezi River basin maintained an above-average consistency between GRACE and
AMSR-E signals in both X- and C-bands for the ∆TWS and SM values and their anomalies also
described in Thomas et al. (2014) and Hassan and Jin (2016). Similar to Thomas et al. (2014), a
water deficit was observed in the area Zambezi River basin due to a hydrological drought event
in April 2005. For the Zambezi and Zaire river basins, the highest amplitudes of ∆TWS and SM
signals on the African continent can be observed. It can therefore be concluded, similarly to the
publication of Hassan and Jin (2016), that the ∆TWS in these regions is dominated mainly by
precipitation. Despite the relatively poorly urbanized area, the most important anthropogenic
factors include that the Zambezi River is used to produce electricity for southern Africa. In the
middle stretch of the river, there is a large artificial water reservoir called Kariba. Incremental
storage of a large mass of water favors capturing this effect by GRACE sensors with a minor
time frequency. Large uncovered agricultural areas and lack of factors contributing to noise
in microwave observations contribute to a significant convergence of results with gravimetric
sensors.

4.3. North America

The large rivers of North America have different results for the studied similarity between
gravimetric and microwave observations. The Mackenzie River basin has its source in Great
Slave Lake. Located in the north of Canada in subpolar regions, the source is closely related to
the snow equivalent variances visible in the GRACE observations but not included in the X- and
C-bands. A similar situation will be seen in the subpolar regions of the Ob River. This result is
visible in small correlations and low aggregation of ∆TWS and SM signals and their anomalies.

The Mississippi River basin has the opposite statistics compared to the Mackenzie River described
previously. The high agreement of ∆TWS and SM observations, shown by the cross-correlation
coefficient > 0.7, is due to the large area of agricultural crops. No limitations for soil conditions,
and <10% afforestation of the area does not retain water in the vegetation and allows free
seepage to groundwater. The main components of EOF3 show similar signal strength in terms of
area. Observations in the X-range have a slightly more substantial phase shift than observations
from the C microwave band. However, the difference is not significant in the context of the
examined similarity to gravimetric observations. The high compatibility of TWSA and SMA
allows both sensors to quickly monitor and predict natural disasters caused by droughts or floods
(Foroumandi et al., 2022).
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4.4. South America

The Amazon basin, well described in the literature previously by Chen et al. (2009), Cui et al.
(2020, 2022), Eom et al. (2017) and Wu et al. (2022), is exceptionally consistent for GRACE
and AMSR-E signals despite being mostly forested. Observations in the X-band captured the
2004 anomaly, which is not visible in the C-band observations. Both bands indicated an anomaly
in 2009 resulting from the exceptional flood in this area (Chen et al., 2010b) and droughts
in 2010–2012 (Nie et al., 2015). As in the two previously mentioned publications, extreme
hydrological phenomena from 2009 to 2012 were captured by the GRACE and AMSR-E sensors
in Figure 12 j). A large area and one of the largest amplitudes of water fluctuations resulting
from tropical rains occurring at equatorial latitudes cause, despite minor soil limitations, the
studied signals to be characterized by considerable convergence.

The La Plata basin region is characterized by a significant anomaly in the GRACE and AMSR-E
observations in Figure 4. Extremes occurring in this area require special attention during
interpretation (Abelen et al., 2015, Chen et al., 2010a). The low topographic complexity
facilitates penetration of the microwave signal. Secondly, a higher value of EOF3 shown in
Figure 7 in the X-band AMSR-E indicates the occurrence of phenomena that in the literature can
be found as the flood of winter 2009/2010. It was correlated with the occurrence of the El Niño
effect and the droughts occurring in 2009. The analysis of the main components indicates that
extreme hydrological phenomena have a significant effect both in gravimetric and microwave
data. However, due to the differentiation in the La Plata river basin, these phenomena are
characterized by a phase shift.

4.5. Asia

The Amur is the tenth longest river in the world, forming the border between the Russian Far
East and Northeast China. From the north of the basin, the area covers permafrost and is covered
with the boreal forest. The southern part of the area is intensively cultivated and distorted by
human activity. As can be seen in Figure 11, the cross-correlation coefficient is at the level
of 0.3, which proves the extremely poor compatibility of the ∆TWS and SM signals. This is
also confirmed in Figure 12 m), n) presenting the time series for this area. Extreme droughts
and wildfires in 2008 described previously in Semenov et al. (2017) are reflected in GRACE
observations in this research, represented by an anomaly in this period, which is entirely absent
in microwave observations.

The Ganges and Brahmaputra valley is intensively used for agriculture and densely populated
area near the Himalayas. The monsoons in this area have become a permanent part of the
landscape of the local population. ∆TWS observations in that area were previously described
by Felfelani et al. (2017), Forootan et al. (2016) and Papa et al. (2015). Figure 12 o) shows
a good agreement between the ∆TWS and SM signals. Cross-correlation over this basin is
at a level of 0.75. However, Figure 12 p) shows the discrepancy between TWSA and SMA
characterized by the opposite trend in the 2006–2012 period. A similar difference was noted
in (Felfelani et al., 2017), described as a significant divergence between the SM natural and
GRACE ∆TWS trend lines. As in the case of the Zaire River, the observations provided by the
AMSR-E mission capture two annual waves and only one primary wave during GRACE. In
this case, the differences between the X- and C-bands are smaller than in the case of the Congo
Basin. Strong amplitudes of GRACE and AMSR-E signals, especially in the X-range, presented
in Figure 8 a), b) indicate the intensity of SM changes in shallow layers for the largest river delta
in the world.
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4.6. Australia

The Murray-Darling basin is a large geographic area in the interior of south-eastern Australia
with intensive farmland use around Adelaide. The area is characterized by one of the best TWSA
and SMA signal correspondences observed in Figure 12 v). The decreasing trend of water
content in the soil in this area was described by Heimhuber et al. (2019), Tregoning et al. (2012)
and Yang et al. (2014). We see considerable agreement in the detected anomaly in 2010-2011
for gravimetric and microwave sensors. Similar conclusions as in the article by Heimhuber et al.
(2019) can be obtained regarding the interpretation of the results from the period 2010–2012. La
Nina Floods can be observed in higher TWSA and SMA in Figure 12 v). Unlike previous works,
ASMR-E sensors did not show decreasing trend related to the 2000–2009 Millennium Drought.
This is partly explained by the aggregation of data over a large river basin area and the different
intensification of phenomena in the northern and southern parts of the river basin. Observations
in the C-band compared to GRACE are similar in phase. Figure 9 shows a more significant
shift in the observations of the X-band for its main components, which explains the shallow
penetration into the soil layers for this band. However, the lack of significant global constraints,
large open spaces, and small built-up areas create favorable conditions for the GRACE and
AMSR-E satellites to detect the same groundwater characteristics and variances. The high
Pearson correlation coefficient at the level of 0.8 and the cross-correlation of about 0.7 are visible
in Figure 10 and Figure 11.

5. CONCLUSIONS

This article discusses the conditions under which the ∆TWS observations provided by the
gravimetric GRACE mission are characterized by a greater or lesser signal convergence with
the observations provided by the passive multiwavelength microwave sensors of the AMSR-E
mission. The interplay of ∆TWS and SM can provide a better and high-resolution understanding
of the Earth’s processes related to the water cycle. The complexity of land uses processes
and conditions impacts the detection and mapping of natural hazards, such as droughts or
floods, observed on a global or regional scale. Understanding the limitations affecting the
speed of detection of changes and consistency in the observations provided using various
methods and sensors has a tangible impact on the quality of the solutions provided for the
prediction of geo-hazards. The main conclusions and observations from the conducted study
worth emphasizing are the mutual relationship between the use of cultivated and forested areas
in the ∆TWS and SM compliance analyses. Naturally forested areas and large open spaces
used for agriculture support the compatibility between GRACE and AMSR-E observations. The
discussion showed a high correlation for these areas, at the same time pointing to the importance
of good oxygen conditions for root zones in the soil. Existing soil constraints such as permafrost
significantly eliminate the usefulness of X- and C-range microwave observations. For this reason,
analyses carried out in subpolar regions using gravimetric sensors have a significant advantage.
The referenced examples in the subsection for Europe indicate differences between GRACE
and AMSR-E in signals leading to the conclusion of unfavorable conditions resulting from soil
constraints and significant urbanization of the area. Moreover, the study opens the question of
spatial data leakage caused by filtering low-resolution GRACE data. Regions with high signal
variance averaged over the area of the entire river basin may cause the loss of a part of the
geophysical signal, which was observed and described for the example of the Zaire River. The
use of mathematical methods and a combination of signals with different spatial and temporal
resolutions, for areas with appropriate conditions and no soil and urban restrictions, will be the
next direction of the research.
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