PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Study on Mechanical Strength and Failure of Fabric Reinforced Polymer Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a study on influence of different fabric weave and fabric orientation on strength properties of fiber reinforced polymer composites. The research concerns materials used in a new type of rotorcraft. Four series of laminates were fabricated with hand forming, using the MGS L285/H285 epoxy resin. Triple-kind experiments were performed: the Shore hardness measurements, tensile strength testing and fractographic analysis. The specimens of different series shown various strength and stiffness characteristics, depending on the type of weave and fabric layup. Three different failure schemes were observed. The Poisson coefficient was different among series, as well, but no understandable link to specimen morphology could be found so far. Fractographic observations suggested intralaminar delamination.
Słowa kluczowe
Twórcy
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
Bibliografia
  • 1. Friedrich K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018; 1: 3–39.
  • 2. Rathod V.T., Kumar J.S., Jain A. Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 2017; 7: 519–548.
  • 3. Skoczylas J., Samborski S., Kłonica M. The application of composite materials in the aerospace industry. Journal of Technology and Exploitation in Mechanical Engineering. 2019; 5(1): 1–6.
  • 4. Kłonica M., Kuczmaszewski J., Samborski S. Effect of a Notch on Impact Resistance of the Epidian 57/Z1 Epoxy Material after “Thermal Shock”. Solid State Phenomena, Trans Tech Publications Ltd, Switzerland. 2016; 240: 161–167.
  • 5. Dębski H., Samborski S. On stability and loadbearing capacity of thinwalled composite profiles subjected to eccentric compression. In Proceedings of 105 the Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications-7th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa 2019, 831–836.
  • 6. Wolszczak P., Sadowski T., Samborski S. On quantitative expression in fibrous composites based on an exemplary distribution of roving glass-fibers. Compos. Part B Eng. 2017; 129: 66–76.
  • 7. Stănescu M.M., Bolcu D. A Study of Some Mechanical Properties of a Category of Composites with a Hybrid Matrix and Natural Reinforcements. Polymers. 2019; 11: 478.
  • 8. Policandriotes T., Filip P. Effects of selected nanoadditives on the friction and wear performance of carbon–carbon aircraft brake composites. 2011; 271: 2280–2289.
  • 9. Sławski S., Szymiczek M., Domin J. Influence of the reinforcement on the destruction image of the composites panels after applying impact load. In AIP Conference Proceedings, Proceedings of the 10th International Conference on Applied Mechanics, Bydgoszcz, Poland 2018; Piatkowski, T., Ed.; AIP Publishing LLC: New York, NY, USA 2019, 2077.
  • 10. Almataev T., Almataev N., Moidinov D. Research of the Tribological Properties of Composite Polymer Materials during the Breaking-in Period. Bull. Sci. Pract. 2019; 5: 242–248.
  • 11. Nagiev A.G., Sadykhov V.V., Gashimova U.M. Identification of Properties of Composite Polymer Materials in the Space of Their Rotational–Viscous Characteristics. Tech. Phys. 2020; 65: 232–237.
  • 12. Moskalyuk O.A., Samsonov A.M., Semenova I., Smirnova V.E., Yudin V.E. Mechanical properties of polymeric composites with carbon dioxide particles. Tech. Phys. 2017; 62: 294–298.
  • 13. Korzec I., Czarnigowski J., Łusiak T., Rękas D., Marciniak M., Komajda K. Modern laminate composite designed for aircraft construction. Journal of Technology and Exploatation in Mechanical Engineering. 2019; 5(1): 1–9.
  • 14. Gadow R., Jiménez M. Carbon fiber-reinforced carbon composites for aircraft brakes. Am. Ceram. Soc. Bull. 2019; 98: 28–34.
  • 15. Katiyar J.K., Sinha S.K., Kumar A. Friction and Wear Durability Study of Epoxy-Based Polymer (SU-8) Composite Coatings with Talc and Graphite as Fillers. 2016; 362–363: 199–208.
  • 16. Husnain A., Asra T., Amir S., Muhammad F., Muhammad S., Iqra A.R.,Ayesha A., Adnan M., Muhammad R., Hafiz H. et al. Methods and composite materials – A review. Polym. Compos. 2019; 40: 1–16.
  • 17. Ming-Sung W., Bo Cheng J., Xin L., Nutt S. A recyclable epoxy for composite wind turbine blades. Adv. Manuf. Polym. Compos. Sci. 2019; 5, 114–127.
  • 18. Gutowski V., Yang W., Li S., Dean K., Zhang X. Lightweight Nanocomposite Materials. In Lightweight and Sustainable Materials for Automotive Applications; Taylor & Francis Group: Abingdon, UK 2017, 9; 277–302.
  • 19. https://www.olympus-ims.com/pl/microscope/bx53m/.
  • 20. Rzeczkowski J., Samborski S., Valvo P.S. Effect of stiffness matrices terms on delamination front shape in laminates with elastic couplings. DOI: 10.1016/j.compstruct.2019.111547.
  • 21. Samborski S. Comp. Struct. 2016; 152: 477–487. DOI: 10.1016/j.compstruct.2016.05.060.
  • 22. Samborski S., Rzeczkowski J. Experimental investigation of delamination onset and propagation in mechanically coupled composite laminates. 2019; DOI: 10.1063/1.5086143.
  • 23. Samborski S., Sadowski T. Dynamic Fracture Toughness of Porous Ceramics. Journal of the American Ceramic Society.
  • 24. Zachariah S.A., Pai D., Shenoy S. Multi-level hybridization in mitigating impact damages in advanced composites – A review on recent trends. 2021; DOI: 10.1016/j.matpr.2021.05.388.
  • 25. Morris R.H., Geraldi N.R., Stafford J.L., Spicer A., Hall J., Bradley C., Newton M.I. Woven Natural Fibre Reinforced Composite Materials for Medical Imaging. Materials. 2020; 13(7): 1684. DOI: 10.3390/ma13071684.
  • 26. Yichao L., Renfu L., Huang C, Kun W. Xianrong Huang a Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Materials & Design. 2016; 99: 477–489.
  • 27. Muniyasamy K., Moorthy C. Advantages of composite materials in aircraft structures. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2019; 6: 11.
  • 28. Pecho P., Hrúz M., Novák A., Trško L. Internal damage detection of composite structures using passive RFID tag antenna deformation method: Basic Research. Sensors, 2021; 21(24). DOI: 10.3390/s21248236.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ce09504-51d7-4696-b59b-7b8137bda3f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.