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1 INTRODUCTION 

The Controller Area Network (CAN) bus was 
developed in the early 1980s and has been in wide use 
for intra-vehicular communication since its initial 
introduction 30 years ago, primarily for automobiles 
and other land vehicles. The CAN bus has been used 
in maritime communication standards for the last 20 
years, yet there are few papers describing the 
maritime applications of the CAN bus or the 
cybersecurity vulnerabilities of the CAN bus in the 
maritime environment. Part I of this paper is a 
technical tutorial describing the CAN bus and how it 
is employed in maritime communications. Part II is 
less technical, and discusses CAN bus cybersecurity 
vulnerabilities and mitigations specific to maritime 
applications. The paper ends with a summary and 
some conclusions. 

 

2 CAN BUS TECHNICAL DESCRIPTION 

In this part of the paper, Section 1 provides an 
overview of the CAN bus, including its history, 
origins, and generic use in the maritime industry. 
Section 2 describes the CAN bus standards, operation, 
and frame format, followed in Section 3 by a high-
level overview of maritime communications 
employing the CAN bus. Section 4 provides a detailed 
description of the coding of a CAN bus transmission. 

2.1 CAN bus overview 

The CAN bus standard is a message-based 
communications protocol developed in the early-
1980s for automobile device communication. Unlike 
the point-to-point and multidrop serial protocols of 
the day, the CAN bus is a broadcast bus where any 
device can transmit when it is ready and does not 
have to wait to be polled by some master station; the 
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CAN bus standard refers to this as a multimaster 
protocol because all devices are, essentially, peers. In 
terms of the Open Systems Interconnection (OSI) 
reference model, the CAN bus standard provides 
physical and data link layer (layer 1 and 2) services. 
Any suitable higher layer protocol can be designed or 
adapted to run over the CAN bus [7, 10–12]. 

The CAN bus was originally developed by Robert 
Bosch Gmbh just as microprocessors were being 
introduced into the design of automobiles. Adopted 
by the Society of Automotive Engineers (SAE) in 1986 
as the Automotive Serial Controller Area Network, 
the 1992 Mercedes-Benz W140 was the first 
production vehicle to employ CAN bus. It is now 
nearly universally used in automobiles for 
interconnecting the vehicle's computer controllers 
with the transmission, airbags, anti-lock braking 
system, power steering, engine control, traction 
management, navigation system, and entertainment 
devices [7, 10, 12]. 

Use of the CAN bus has grown considerably over 
the last three decades. Within the transportation 
sector alone, CAN bus communications are used in [3, 
10]: 
− Buses, tractor trailers, and agricultural vehicles to 

interconnect specialized systems and devices. 
− Aircraft to interconnect flight state sensors and 

analyzers, navigation systems, aircraft engine 
control systems, flight surfaces, fuel systems, and 
more. 

− Railroad equipment such as streetcars, trams, 
subways (undergrounds), light rail, and long-
distance trains. 

− Maritime vessels to interconnect such equipment 
as the wind speed/wind direction/air temperature 
sensors, Automatic Identification System (AIS), 
Global Navigation Satellite System (GNSS), 
gyroscope, compass, navigation display, a large 
variety of ship status sensors, voyage data recorder 
(VDR), and ship state dashboard display (Figure 
1). 

 
Figure 1. CAN bus interconnection of (clockwise, from 
upper left) the weather station, AIS and GNSS receivers, 
gyroscope, compass, navigation display, myriad sensors, 
VDR, and ship state dashboard display. 

Cars represent the very earliest of what we now 
refer to as industrial control systems (ICS), where 
computers, sensors, and actuators are interconnected 
to manage and operate industrial and other 
mechanical systems. ICS are used on land as well as in 
the air and on the water. The CAN bus is currently 

employed in environments as varied as audio/video 
systems and smart building controls to telescopes and 
elevators/escalators [3]. 

2.2 CAN bus standards and operation 

This section will describe the CAN bus standards, 
protocol layers, and operation in order to establish a 
basis for the discussion of security vulnerabilities. 

2.2.1 Standards 

The SAE J1939 family of standards describes both 
the physical and data link layers of the CAN bus, as 
well as higher layer protocols for use in a variety of 
automotive applications [28]. The generic global CAN 
bus specification is contained in four standards from 
the International Organization for Standardization 
(ISO): 
− ISO 11519-1 describes a low-speed (125 kbps) serial 

interface [18]. 
− ISO 11898-1 describes the data link layer frame 

format and physical layer signaling [15]. 
− ISO 11898-2 describes the high-speed (1 Mbps or 5 

Mbps) interface [16]. 
− ISO 11898-3 describes a low-speed, fault-tolerant 

interface [17]. 

The CAN bus multimaster architecture supports a 
multihost, broadcast environment where any node can 
transmit whenever it has data to send, although rules 
must be in place to ensure that end devices do not 
transmit over one another. Higher-layer protocols 
define the messages that are exchanged via the CAN 
bus. 

2.2.2 Physical Layer 

The CAN bus physical layer is a two-wire bus 
(Figure 2). Each node attaches to both wires, called 
CAN high (CANH) and CAN low (CANL). By default, 
the bus signals are driven to a dominant state (0) with 
CANH > CANL; a signal is passively pulled by 
resistors to a recessive state (1) with CANH ≤ CANL. 
Thus, if more than one node transmits at the same 
time, the effect is a logical AND (i.e., if any node 
transmits a 0, then 0 will be the resultant signal on the 
line; only if all transmitting nodes send a 1 will the 
resultant signal be a 1). In order to maintain clock 
synchronization, the CAN bus employs a bit-stuffing 
mechanism where five consecutive bits of the same 
value are followed by a single bit of the opposite 
value [6, 7, 11, 12]. 

The CAN bus has a relatively simple physical 
design (Figure 3). The main backbone comprises a 
series of point-to-point, twisted-pair cables with a 
CAN bus connector at each end. The entire CAN bus 
is terminated at each end with a terminating resistor. 
Devices are attached to the backbone by placing a T-
connector on the bus; the backbone, then, is really a 
sequence of cables that string together the T-
connectors. The T-connector also attaches to a two-
wire pigtail that connects to the CAN bus interface on 
compatible devices. 
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Figure 2. CAN bus nodes connected to the two-wire bus. 
Note that the bus is terminated with a resister. (Source: 
https://cdn10.bigcommerce.com/s-7f2gq5h/product_images 
/uploaded_images/can-bus-network-with-transceiver.jpg) 

 
Figure 3. CAN bus architecture. 

The CAN bus standard supports speeds up to 1 
million bits per second (Mbps) or distances up to 
3,300 feet (1,000 meters). As shown in Table 1, the 
maximum speed decreases as the end-to-end distance 
– and end-to-end signal delay – increases [7, 11, 12]. 
Table 1. Cable length and maximum speed trade-off. _______________________________________________ 
Cable Length     Max. Speed _______________________________________________ 
1,000 m (3,300 ft)    50 kbps 
500 m (1,660 ft)    125 kbps 
200 m (650 ft)     250 kbps 
100 m (330 ft)     500 kbps 
40 m (130 ft)     1 Mbps _______________________________________________ 

2.2.3 CAN Bus Frame Types 

The bits on the CAN bus are organized into a 
protocol data unit called a frame. There are two frame 
formats; CAN 2.0A, called the base frame format, uses 
an 11-bit Identifier field while CAN2.0B, called the 
extended frame format, uses a 29-bit device identifier, 
split between an 11-bit Identifier field and an 18-bit 
Identifier Extension field [7, 11]. 

There are four primary types of frames used by the 
CAN bus standard. The most common frame type is a 
data frame which contains up to 8 bytes of data 
transmitted by a device. A remote frame is used by 
one device to request data from another; it contains no 
data. An error frame is transmitted by any device 
detecting any sort of error in a transmission; this 
frame causes all other devices to send an error frame 
after which the original transmitter will automatically 

resend its message. Finally, an overload frame is sent 
by a device that is in an overloaded or busy state, and 
is used to inject a delay between transmissions. 

 
Figure 4. CAN 2.0A frame with 11-bit identification field 
(top) and CAN 2.0B frame with 29-bit identification field 
(bottom). (Source: https://cdn.sparkfun.com/assets 
/learn_tutorials/5/4/1/CAN_PacketStructureFrames_1.png) 

Figure 4 shows the CAN 2.0 frame format for both 
basic and extended frames. The fields are: 
− Start-of-Frame (SOF) bit (0) 
− Base Identifier (11 bits in length) 
− Substitute Remote Request (SRR) bit (1) [CAN 2.0B 

only] 
− Identifier Extension (IDE) bit (0 in CAN2.0A, 1 in 

CAN2.0B)) 
− Extended Identifier (18 bits in length) [CAN 2.0B 

only] 
− Remote Transmission Request (RTR) bit (0 = Data, 

1 = Remote Request) 
− Reserved (RES) bits (0) 
− Data Length Code (4 bits in length, value 0-8) 
− Data (0-8 bytes in length) 
− Cyclic Redundancy Check (CRC) field (16 bits in 

length) 
− CRC-15 value (15 bits in length) 
− CRC Delimiter bit (1) 

− Acknowledgement (ACK) field (2 bits in length) 
− ACK Slot bit (transmitter sends 1, any receiver 

can send 0) 
− ACK Delimiter bit (1) 

− End-of-Frame (EOF) field (1111111) 
− Inter-Frame Space (IFS; at least seven 1s) 

The CAN bus frame structure is not terribly 
efficient in terms of data transfer; an extended frame 
with eight bytes of data is at least 135 bits in length, 
which means that, at most, 47% of the transmission is 
data. For the original designers of automotive 
networks, this was not a high price to pay in a 
geographically small network with only a few dozen 
devices, but it does not necessarily scale well to 
physically larger networks with more devices. 

2.2.4 Arbitration 

The CAN specification employs a broadcast bus so 
that all devices hear all transmissions. There is no bus 
controller nor is there a primary device to which all 
others must communicate; it is essentially a peer-to-
peer network. When more than one station is ready to 
transmit, they resolve the conflict through a process 
known as arbitration [7, 11]. This process is somewhat 
similar to the Carrier Sense, Multiple Access with 
Collision Detection (CSMA/CD) scheme used in IEEE 
802.3/Ethernet networks. 

When a CAN device is ready to transmit, it listens 
to the bus to see if the bus is already in use. If another 
device is transmitting, the station waits until the line 
becomes idle, represented by a sequence of more than 
seven consecutive 1 bits (the Inter-Frame space), 
before it starts transmitting. If more than one device 
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becomes ready while another station is transmitting, 
all will start to transmit at the same time after seeing 
the line go idle. 

A device continues to monitor the bus while it 
transmits. As described in Section 3.2 above, if more 
than one station transmits at one time, the resultant bit 
signal on the line is the equivalent of a logical AND of 
the two inputs. As soon as a station "sees" a bit that is 
different from one that it sent, it will stop 
transmitting. 

Consider this simple example of CAN bus 
arbitration. Suppose there two devices that are ready 
to transmit, where Device 1 has the 11-bit address 
0x5C3 (binary 10111000011) and Device 2 has the 
address 0x598 (binary 10110011000). Per the 
description of the CAN bus frame, both stations start 
by transmitting a Start-of-Frame bit, or a 0, so both 
will "see" a 0 on the line. 

 
Figure 5. CAN bus arbitration. Devices 1 and 2 start to 
transmit at the same time; Device 2, with the lower address, 
"wins" the arbitration. 

Next, each station starts to send their 11-bit 
identifier (Figure 5). The first four bits of both 
addresses are "1011" so each station sees, in turn, the 
same bit on the line as the one that they are sending. 
When they transmit the fifth bit (Bit 7), Device 1 sends 
a 1 and Device 2 sends a 0; the resultant value on the 
line is a 0. At that point, Device 1 stops transmitting 
but Device 2, seeing the same value as it transmitted, 
continues. This same arbitration process works 
regardless of how many stations might wish to transit 
at once. The station with the lowest address will 
always win the arbitration and, in fact, is never aware 
that a collision occurred. 

2.2.5 Higher-Layer Protocols 

The CAN bus standard defines a physical layer 
and frame format for the exchange of data. The actual 
format of the data is specified in application- and 
device-specific higher-layer protocols. The format for 
higher-layer messages are described in parameter 
group number (PGN) specifications. A PGN defines 
the function of a message, the format of the CAN bus 
Arbitration field, and the format of the contents in the 
Data field. 

2.3 Maritime communications over the can bus 

This section will briefly describe the primary maritime 
communication standard that employs the CAN bus. 

2.3.1 Maritime Communication Standards 

Just as there are many networks onboard a ship, 
there are many communication protocols and 
standards. National Marine Electronics Association 
(NMEA) standards are the primary specifications 
employed on boats and ships of all sizes to 
interconnect instrumentation, from a Global 
Positioning System (GPS) receiver, navigation display, 
and engine monitor to the Electronic Chart Display 
and Information System (ECDIS), myriad sensors, and 
a variety of controllers (Figure 6). 

 
Figure 6. Maritime instrumentation and the NMEA 2000 bus 
on a boat. (Source: https://upload.wikimedia.org/wikipedia 
/commons/b/bf/NMEA2000_Modified_motor_yacht.jpg) 

There are three dominant NMEA standards for 
instrumentation communication within a vessel: 
− Introduced in 1983, NMEA 0183 operates on 

Electronic Industries Alliance (EIA)-232/422 serial 
lines at 4,800 or 38,400 bits per second (bps). This 
standard is the basis of International 
Electrotechnical Commission (IEC) standard 
61162-1, and is employed in International 
Telecommunication Union, Radiocommunication 
Sector (ITU-R) Recommendation M.1371-5 for 
over-the-air transmissions at a rate of 9,600 bps. 
Version V4.11 of NMEA 0183 was released in 2018 
[22]. 

− NMEA 2000 was released in 2001 and introduced a 
streamlined message format and PGN message set 
to support a large variety of maritime devices. This 
standard operates at speeds up to 250 kbps  over 
the CAN bus. NMEA 2000 was adopted as IEC 
61162-3; Edition 3.101 was released in 2016 [23]. 

− OneNet is the newest member of the NMEA family 
of standards. Released in 2020, OneNet employs a 
superset of the NMEA 2000 message set. OneNet 
devices exchange data using Internet Protocol 
version 6 (IPv6) packets running over an Ethernet 
local area network at speeds up to 10 Gbps  and 
employs IP Security (IPsec) for secure inter-device 
communication [24]. 

Since NMEA 2000 is the only one of these 
standards to operate over the CAN bus, the remainder 
of this discussion will focus on the interrelationship of 
these two standards. 

2.3.2 NMEA 2000 

As mentioned above, the NMEA 2000 (aka N2K) 
standard is designed for communication between 
marine electronics on a vessel and employs the CAN 
bus as the physical layer; this protocol is not used for 
over-the-air transmissions [2]. Prior maritime 
communication standards used point-to-point links 
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between each device and a central controller, whereas 
the CAN bus employs a single communications bus 
with which to interconnect multiple devices. Use of 
the CAN bus yields a much simpler wiring scheme 
that requires less overall cable, resulting in a 
noticeable reduction in the cost of the wiring, 
installation, and maintenance, as well as a lower total 
weight of the system [6, 10, 12]. 

N2K messages are denoted by their name and PGN 
[6, 10, 23]. Each PGN definition describes details 
about the message, including (Figure 7): 
− The binary format of the data 
− Message priority (0-7) 
− Whether the message fits in a single frame (i.e., it 

contains eight or fewer bytes of data) or requires 
multiple frames 

− Whether the message is addressed to a specified 
destination or is a broadcast (global) message [All 
transmissions are physically broadcast on the CAN 
bus. An addressed PGN is ignored by all devices 
other than the one matching the destination 
address in the CAN bus transmission; global PGNs 
are received by all devices on the bus.] 

  
Figure 7. A sample NMEA 2000 PGN. [2] 

 
Figure 8. NMEA 2000 format of 29-bit Arbitration Fields in 
CAN Bus Extended Frame, showing encoding for an 
addressed (upper) and global (lower) PGN. 

NMEA 2000 specifies use of the CAN bus 
Extended Frame format, employing a 29-bit 
arbitration field (Figure 8). The first three bits are the 
message priority field. Bit 4 is reserved and always set 
to zero [2]. 

The next bit is the leading bit of the 17-bit PGN 
identifier. This first bit is, functionally, an 

addressed/global indicator. If this bit is a 0, the PGN is 
addressed and, if set to 1, the PGN is global. CAN bus 
arbitration, then, favors addressed messages over 
global messages (the overwhelming majority of PGNs 
are global). The setting of this bit affects the encoding 
of the next 16 bits, which contain the low-order 16 bits 
of the PGN identifier. 
− In the case of an Addressed PGN, the next 16 bits 

are the sum of the PGN identifier and the 8-bit 
address of the intended destination device. As an 
example, the ISO Address Claim message has a 
PGN identifier of 060928 (0xEE00). If this message 
was being sent to a device with address 165 (0xA5), 
these 16 bits would be encoded as 0xEEA5. 

− In the case of a Global PGN, the next 16 bits are 
merely the remainder of the PGN identifier. As a 
broadcast message, the destination address is 
implied to be 255 (0xFF). 

The final eight bits of the Arbitration field contain 
the address of the transmitting device (0-254, 0x00-
0xFE). Given the CAN bus arbitration scheme, a lower 
priority message will always be sent before a higher 
priority message if multiple devices are ready to 
transmit at one time. If the priority of multiple 
transmissions is the same, lower PGNs take 
precedence over higher numbered PGNs; Addressed 
PGNs, then, will be sent before Global PGNs. In the 
case of multiple Addressed PGNs of the same value, a 
lower destination address wins arbitration over a 
higher destination address. Finally, if the priority and 
PGN are the same, the lowest source address wins 
arbitration. 

The next field of importance to NMEA 2000 is the 
Data Length field, which can take on a value between 
zero and eight, indicating the length of the Data field, 
which can be from zero to eight bytes. A PGN 
containing eight or fewer bytes will be transported in 
a single CAN bus frame; larger PGNs – referred to as 
multi-frame PGNs – are fragmented and transported 
in multiple CAN bus frames. There are two strategies 
in NMEA 2000 for managing a multi-frame PGN. 
− The fast-packet method supports PGNs with up to 

223 bytes of data. In this case, the PGN is assigned 
a serial number (0-7) and can be fragmented into 
up to 32 CAN bus frames, each of which is 
assigned a sequence number (0-31). The 
combination of the serial number and sequence 
number allows for PGN reassembly. 

− The multi-packet method supports PGNs with up 
to 1,785 bytes of data. This method uses Request to 
Send (RTS) and Clear to Send (CTS) messages 
exchanged between the sender and receiver to 
control when the individual CAN bus frames can 
be sent. 

2.4 Sample CAN bus frame and PGN encoding 

The complete encoding and transmission of an NMEA 
2000 PGN in a CAN bus frame is shown below, with 
the intent to remove some of the mystery. This 
example will show the encoding of a Position, Rapid 
Update message, with a PGN identifier value of 
129025 (0x1F801). This is a global message with a 
priority of 2; in this example, the sending device has 
the address 150 (0x96) [2]. 
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Figure 8 shows the format of the 29-bit Arbitration 
field. For this example, the field contains the 
following values: 
− Priority = 0x2 (010) 
− Reserved = 0 
− High-order PGN identifier bit = 1 (global) 
− Low-order 16-bits of PGN identifier = 0xF8-01 

(11111000 00000001) 
− Source address = 0x96 (10010110) 

PGN 129025 has two data fields, namely Latitude 
and Longitude, each of which is four bytes in length. 
In this example, we will use the coordinates of the 
U.S. Coast Guard Research and Development Center 
in New London, Connecticut: 
− Latitude = 41°20'44.1"N (encoded 0xA0-D5-A4-18) 
− Longitude = 072°05'45.7"W (encoded 0x00-05-07-

D5) 

Figure 4 shows the entire CAN bus Extended 
Frame format. In this example, the frame would be 
encoded as follows: 
− SOF: 0 
− Base ID (first 11 bits of the Arbitration field): 

01001111110 
− SRR: 1 
− IDE: 1 
− Extended ID (last 18 bits of the Arbitration field): 

000000000110010110 
− RTR: 1 
− Reserved bits: 00 
− Data Length: 0x08 (00001000) 
− Data: 0xA0-D5-A4-18-00-05-07-D5 (10100000 

11010101 10100100 00011000 00000000 00000101 
00000111 11010101) 

− CRC-15 value: 101001010110010 
− CRC Delimiter bit: 1 
− ACK Slot bit: 1 
− ACK Delimiter bit: 1 
− EOF: 1111111 
− IFS: 1111111.... 

Given this data, the transmitted bit stream would 
appear as follows; stuffed bits, to maintain clock 
synchronization between the SOF bit and the end of 
the CRC field, are shown in bold: 

00100111110101100000100001100101101000001010001
01000001110101011010010000011 
10000010000010000010101000001111110010101101001
0101100101111111111 

The receiving device would interpret this bit 
stream as shown in Figure 9. 

 
Figure 9. Interpretation of CAN bus frame using the 
Actisense EBL Reader [1]. 

3 CYBERSECURITY VULNERABILITIES AND 
MITIGATIONS 

Part I of this paper provided the technical details 
about the CAN bus and NMEA 2000 standards 
necessary for an appreciation of the cybersecurity 
vulnerabilities that are described in this part of the 
paper. Part II is decidedly less technical than Part I. 

3.1 CAN bus cybersecurity issues 

There have been many papers written about CAN bus 
security issues. Although these papers typically 
address vehicular and agricultural applications, CAN 
bus cybersecurity vulnerabilities in ICS and aviation 
networks and avionics have also been reported [8, 9]. 
It is not surprising that papers discussing the 
maritime environment are hard to find; although the 
CAN bus protocol has been in place since the late-
1980s, it has only been in use in maritime since 2000. 
Most of the CAN bus cybersecurity papers have been 
published in the last 15 years, which is when 
cybersecurity discussions started to become more 
mainstream and hacking conferences demonstrated 
attacks on vehicular networks. 

This section will explore what kind of 
vulnerabilities are present that threaten the security of 
information on CAN bus network. Information 
security is often discussed in terms of the CIA Triad, , 
where CIA stands for confidentiality, integrity, and 
availability. This section addresses CAN bus 
vulnerabilities in terms of these characteristics of 
information. Note that some of the scenarios 
described below are impossible with a properly 
functioning CAN bus or NMEA 2000-certified device, 
but might be quite possible if a rogue device was built 
specifically to violate the CAN or N2K standards. 

3.1.1 Confidentiality 

Confidentiality refers to the secrecy or privacy of 
information between a sender and receiver. Neither 
the CAN bus nor NMEA 2000 standards address 
confidentiality. Both the CAN bus and the NMEA 
2000 standard provide a mechanism to send a 
message addressed to specific receiver; a sender 
needing product information from another network 
node, for example, optimizes network bandwidth by 
sending an addressed message because it does not 
need a response from all of the devices. Similarly, a 
command and control message telling a particular 
actuator or valve to engage should only be sent to the 
necessary target device. 

CAN, however, is a broadcast bus and, therefore 
every device can hear every transmission [5, 12, 21]. 
While a properly configured CAN device will not 
"listen" to an addressed message if it is not the 
intended receiver, a CAN device could be designed to 
operate in promiscuous mode and listen to every 
transmission. 

Similarly, the majority of NMEA 2000 PGNs are 
global messages that employ the broadcast address, so 
that N2K device sees every global message. Although 
an NMEA 2000-certified device will not listen to 
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addressed PGN not intended for this device, a rogue 
promiscuous N2K node could read all PGNs. 

The use of cryptography could be employed to 
ensure confidential communication between two 
network nodes [19]. Neither the CAN bus nor NMEA 
2000 PGNs have a provision for encryption [2, 4]. 

At the physical level, it is possible to add a rogue 
device to the CAN bus [4, 5, 21]. A CAN bus on a car, 
truck, or passenger coach might have dozens of 
devices on a network that is 10-100 ft (3-30 m) in 
length and difficult to surreptitiously access. A ship 
might have several hundred devices on a network that 
is more than 1,000 ft (305 m) in length. In any case, it 
is straight-forward to covertly add a device to a CAN 
bus; all you need is a short length of backbone pigtail 
cable, a T-connector to attach to the rogue device, and 
an obscure access panel on the ship (Figure 10). 

 
Figure 10. Easy physical access to the CAN Bus on a vessel 
can make it simple to add a rogue device. 

The ability to physically insert a rogue node on the 
CAN bus and the lack of confidentiality in the 
transmissions provides many ways in which a 
malicious actor can access and, possibly, exfiltrate 
information from a vessel's network. An inserted 
node, for example, can monitor all or a select subset of 
transmissions on the communications bus; this node 
can buffer the information for later retrieval by a Bad 
Actor or transmit the information to another system 
on or off the vessel in real-time. 

3.1.2 Integrity 

In the vernacular of information security, integrity 
refers to the correctness of the message; including 
whether the received message is the same one that 
was transmitted by the sender, the information is 
correct, and the purported sender is actually the one 
who sent the message. 

Bit integrity is provided on the CAN bus by use of 
a CRC calculation; if the receiver calculates a different 
checksum value than the one contained in the CRC 
field of the message, then this indicates that a bit error 
has occurred during transmission. A rogue device can 
send spurious bits on the line, forcing such 
transmission errors, causing the receiver to ignore a 
transmission. A sufficient number of such bit errors 
could cause other devices to believe that the 
communication bus is unreliable [4, 5, 21]. 

The CRC provides bit integrity in the CAN bus 
only on a per-frame basis. An NMEA 2000 multi-
frame PGN is sent in multiple CAN bus frames, but 

there is no mechanism to ensure bit integrity of the 
entire PGN message. One of the NMEA 2000 multi-
frame mechanisms is the fast-packet method, which 
allows a PGN of up to 223 bytes sent in up to 32 CAN 
bus frames; each multi-frame block has a serial 
number (0-7) and each frame within the block has a 
sequence number (0-31). Suppose there is a fault on 
the bus that causes some frames to be lost without the 
sender knowing. If the sender continues sending 
multi-frame PGNs, it increments the multi-frame 
serial number. After eight multi-frames, the serial 
number wraps back around to match the serial 
number of the block where the fault occurred. It is 
possible for a frame from the new block to have a 
sequence number that matches a missing frame from 
the old block, which will then be used by the receiver 
to reassemble the first PGN. This reassembly error 
scenario is rare under normal circumstances, but such 
an error could be forced by a rogue node. 

A rogue N2K device can also send bogus 
messages, an attack known as frame injection. As an 
example, a device on the network could send fake 
NMEA 2000 messages masquerading as the GPS 
receiver, compass, or depth gauge, causing false 
information to be fed to the navigation console. There 
is no CAN bus or NMEA 2000 mechanism to verify 
that transmitted data is correct or that the sender is 
the device that it purports to be [4, 5, 21, 25]. 

NMEA 2000 and CAN bus standards provide no 
timestamp in the message body, thus providing no 
timing integrity. This opens the network to a replay 
attack, where a legitimate message is stored and 
retransmitted at a later time by a rogue device. As an 
example, during an extreme low tide in a narrow 
channel, an attacker could replay depth gauge 
information from an earlier extreme high tide, 
possible causing a ship to run aground [4]. 

The CAN bus protocol also provides no 
authentication mechanism, thus providing no way to 
ensure the integrity of the sender's address. CAN bus 
nodes derive their device identifier from their serial 
number, hardware switch settings, or other 
assignment mechanism, but there is actually nothing 
that would prevent a device from using an address 
already in use on the bus. Similarly, a rogue N2K 
device could use the same source address as another 
device, and spoof the authentic device and its 
information [20, 21, 25]. 

Another attack on message integrity could occur if 
a rogue device on a CAN bus network uses the same 
address as another node, in which case it would be 
impossible for receivers to distinguish between the 
different transmitters. Indeed, this scenario would 
allow multiple physical devices to attempt to transmit 
different data at the same time. 

3.1.3 Availability 

The availability of information refers to the ability 
of (authorized) users to access data or the network 
communications channel whenever they need to. 
There are several attacks on availability possible via 
the CAN bus. 

One of the biggest compromises to availability is a 
denial-of-service (DoS) or resource exhaustion attack. 
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These attacks makes a device or the entire network 
inaccessible by using up all of the available device 
memory or network bandwidth by bogus requests for 
service. Consider the example above where a rogue 
device purposely uses the same address as another 
node on the CAN bus and continues to transmit when 
the valid device transmits. The arbitration process is 
designed to be resolved during the transmission of the 
Arbitration field; transmitting after losing arbitration 
is a direct violation of the CAN bus protocol. A 
receiver detecting a line state different from its 
transmission while sending its Data field will 
interpret the event as a transmission error; this will 
eventually cause the device to enter a BUS OFF state 
and remove itself from the network. A BUS OFF state 
is resolved by rebooting the device, the device’s CAN 
bus controller, or, in extreme cases, the entire CAN 
bus network [5, 8, 25, 27]. 

Another way to force devices to enter a BUS OFF 
state is if one or more are operating at different 
transmission rates. NMEA 2000 requires devices to 
operate at 250 kbps. If a rogue device was placed on 
the network persistently operating at a different 
speed, some or all of the other transmitting devices 
would eventually enter a BUS OFF state [27]. 

The CAN bus arbitration process favors devices 
with lower addresses. By assuming a low address, a 
rogue device could launch a different form of DoS 
attack by continually transmitting and blocking out 
other devices [5, 21]. 

Another form of DoS attack is for a rogue node to 
send spurious error or overload frames, or otherwise 
signal nonexistent error conditions. This can result in 
unnecessary network or device resets, causing a 
sequence of network outages [5, 25]. A malicious node 
can also send false RTS messages and overflow the 
receiver's input buffer or send bogus CTS messages to 
hold a connection open and usurp the entire network 
bandwidth [5]. 

3.1.4 Additional Observations 

If there are applicable lessons from the Stuxnet 
virus – designed to attack centrifuges in Iranian 
nuclear research facilities and discovered in 2010 – 
they are that software can be used to attack hardware 
and malware can be hidden in a working system for 
years before being activated [30]. It is not too far-
fetched to realize a Trojan Horse scenario where a 
CAN bus controller manufacturer builds malware into 
a working system. Such a system would work 
precisely as designed until its malware was activated, 
which could then launch any one of the attack 
schemes mentioned above [4, 21]. 

3.2 CAN bus security protections and migrations 

A number of mechanisms have been proposed to 
mitigate or reduce CAN bus security vulnerabilities. 
While most focus on automotive and vehicular 
applications, this section will review several that 
might apply to the maritime environment. 

The easiest mitigation strategy is network 
segmentation, where a network is subdivided into 
multiple subnetworks, usually based upon their 

function. NMEA 2000 limits the CAN bus to cable 
segments of no more than 200 m (650 ft) in length due 
to employing a 250 kbps transmission speed. CAN 
bus network designers can add security to the system 
by separating passenger/crew, entertainment, 
engineering, navigation, and other functional 
communications onto different network segments. 
While this design adds cost to implementation and 
maintenance, it limits access to critical systems by 
potential Bad Actors [5, 14, 25, 29]. 

While the use of cryptography would provide 
privacy, confidentiality, and authentication for the 
CAN bus, the protocol issues in the maritime 
environment make the introduction of encryption 
methods unlikely. Several methods have been 
proposed for adding encryption to the CAN bus, but 
all have focused on relatively small, low-traffic 
automotive networks that would employ modified, 
specialized CAN bus nodes. Encryption is also a drain 
on the limited computational and storage resources of 
the typical CAN bus node [5, 19, 25, 31]. Shipboard 
networks are not geographically small and evolving 
maritime equipment is actually producing an 
increasing amount of information and network traffic. 
The protocol overhead added by encryption 
exacerbates the limitations of the CAN bus protocol 
that only allows eight bytes of data per transmission; 
sending larger messages would necessitate adding 
traffic to an already burdened network.  In the 
maritime environment, it would be possible to 
encrypt NMEA 2000 PGNs where the use of 
cryptography would be transparent to the CAN bus 
protocol, although such methods have not yet been 
designed. Theoretically, such mechanisms could be 
added to the N2K standard by defining PGNs for key 
exchange; use of secret key cryptography would not 
increase the size of the PGNs although it would add 
to the processing burden of the node [19]. 

An intrusion detection system (IDS) is commonly 
employed on a network to detect, and respond to, 
cyberattacks. A host-based IDS is generally software 
that resides on a network node, and analyzes the 
traffic in and out of the node to detect anomalous 
behavior; a network-based IDS is a physical device on 
the network that monitors network traffic to detect 
aberrant behavior. A host-based IDS would not be 
feasible in today's maritime environment as it would 
require changes to the devices themselves and add a 
computational burden. A network-based IDS, 
however, could easily be attached to a CAN bus 
without any impact on the network. A number of IDS 
methods for the CAN bus have been proposed, all for 
automotive networks. The research has shown myriad 
advantages and disadvantages, taking into account 
the complexity of the algorithms, types of attacks 
detected, rate of false positives/negatives, and cost [5, 
25]. Designing an IDS for maritime CAN bus 
environments seems to be one area that might bear 
fruit. Such an IDS would utilize a host-based, passive 
monitor that can detect anomalous activity on the 
network without adding any traffic to the bus. 
Furthermore, it would require no change to the CAN 
bus protocol. 

Fenster, Lee, and Whitfield [13] proposed a 
machine-learning approach to detecting rogue devices 
on a CAN bus. Their method identified a subset of 
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PGNs for a specific application environment. They 
took advantage of the fact that NMEA 2000 is a 
proprietary standard, meaning that an attacker will 
not have complete information when attacking an 
NMEA 2000 network and, therefore, can be detected. 
This is not a CAN bus-specific solution, but it suggests 
an interesting approach to defending the maritime 
network environment. 

4 SUMMARY AND CONCLUSIONS 

The CAN bus was developed in the 1980s for the 
automotive environment. Developed for a trusted 
network during a time when networks could be 
trusted, it has no particular security mechanisms or 
defenses. Indeed, use of the CAN bus shows little sign 
of diminishing 40-plus years later, yet the security 
landscape is very different today than it once was; 
consider that the hacker community has been 
demonstrating successful attacks on automotive CAN 
bus networks for more than a decade and CAN bus 
attack suites employing open-source code and 
inexpensive hardware are now readily available [26]. 
We can no longer afford to build networks that are 
resilient to naturally-occurring errors but not to active 
attack. 

In today's environment of nearly constant 
cyberwarfare, cyberattacks are planned and scheduled 
to occur at the convenience of the attacker. Any of the 
exploits described here might be exacerbated by the 
fact that a ship at sea has access to a limited pool of 
personnel and other resources. While a large vessel 
might have someone trained to administer shipboard 
information technology (IT) systems and deal with 
some malfunctions, most are unlikely to have an 
information security officer trained to recognize and 
respond to a cyberattack. Furthermore, regardless of 
the qualifications of the ship's officers and crew, being 
at sea limits the options for fixing a problem; 
sometimes the only solution is to power essential 
devices down. 
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