
531

1 INTRODUCTION

The Controller Area Network (CAN) bus was
developed in the early 1980s and has been in wide use
for intra-vehicular communication since its initial
introduction 30 years ago, primarily for automobiles
and other land vehicles. The CAN bus has been used
in maritime communication standards for the last 20
years, yet there are few papers describing the
maritime applications of the CAN bus or the
cybersecurity vulnerabilities of the CAN bus in the
maritime environment. Part I of this paper is a
technical tutorial describing the CAN bus and how it
is employed in maritime communications. Part II is
less technical, and discusses CAN bus cybersecurity
vulnerabilities and mitigations specific to maritime
applications. The paper ends with a summary and
some conclusions.

2 CAN BUS TECHNICAL DESCRIPTION

In this part of the paper, Section 1 provides an
overview of the CAN bus, including its history,
origins, and generic use in the maritime industry.
Section 2 describes the CAN bus standards, operation,
and frame format, followed in Section 3 by a high-
level overview of maritime communications
employing the CAN bus. Section 4 provides a detailed
description of the coding of a CAN bus transmission.

2.1 CAN bus overview

The CAN bus standard is a message-based
communications protocol developed in the early-
1980s for automobile device communication. Unlike
the point-to-point and multidrop serial protocols of
the day, the CAN bus is a broadcast bus where any
device can transmit when it is ready and does not
have to wait to be polled by some master station; the

The CAN Bus in the Maritime Environment – Technical
Overview and Cybersecurity Vulnerabilities

Gary C. Kessler
Fathom5, Ormond Beach, Florida, USA

ABSTRACT: The Controller Area Network (CAN) bus standard was developed in the 1980s and is in
widespread use in automobile, vehicular, aviation, and other networks. The CAN bus was introduced in the
maritime environment with the adoption of the National Marine Electronics Association (NMEA) 2000 standard
in the late-1990s. Many papers have been written about the CAN bus protocols and security vulnerabilities but
there is sparse literature about use of the CAN bus in the maritime environment. Part I of this paper is a
technical overview, describing CAN bus standards and operation, with particular attention to its use with the
NMEA 2000 maritime communications standard. Part II of this paper describes security vulnerabilities in terms
of loss of confidentiality, integrity, or availability of information (such as eavesdropping, denial-of-service, and
spoofing), and mitigations specific to the maritime environment.

http://www.transnav.eu

the International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 15
Number 3

September 2021

DOI: 10.12716/1001.15.03.05

532

CAN bus standard refers to this as a multimaster
protocol because all devices are, essentially, peers. In
terms of the Open Systems Interconnection (OSI)
reference model, the CAN bus standard provides
physical and data link layer (layer 1 and 2) services.
Any suitable higher layer protocol can be designed or
adapted to run over the CAN bus [7, 10–12].

The CAN bus was originally developed by Robert
Bosch Gmbh just as microprocessors were being
introduced into the design of automobiles. Adopted
by the Society of Automotive Engineers (SAE) in 1986
as the Automotive Serial Controller Area Network,
the 1992 Mercedes-Benz W140 was the first
production vehicle to employ CAN bus. It is now
nearly universally used in automobiles for
interconnecting the vehicle's computer controllers
with the transmission, airbags, anti-lock braking
system, power steering, engine control, traction
management, navigation system, and entertainment
devices [7, 10, 12].

Use of the CAN bus has grown considerably over
the last three decades. Within the transportation
sector alone, CAN bus communications are used in [3,
10]:
− Buses, tractor trailers, and agricultural vehicles to

interconnect specialized systems and devices.
− Aircraft to interconnect flight state sensors and

analyzers, navigation systems, aircraft engine
control systems, flight surfaces, fuel systems, and
more.

− Railroad equipment such as streetcars, trams,
subways (undergrounds), light rail, and long-
distance trains.

− Maritime vessels to interconnect such equipment
as the wind speed/wind direction/air temperature
sensors, Automatic Identification System (AIS),
Global Navigation Satellite System (GNSS),
gyroscope, compass, navigation display, a large
variety of ship status sensors, voyage data recorder
(VDR), and ship state dashboard display (Figure
1).

Figure 1. CAN bus interconnection of (clockwise, from
upper left) the weather station, AIS and GNSS receivers,
gyroscope, compass, navigation display, myriad sensors,
VDR, and ship state dashboard display.

Cars represent the very earliest of what we now
refer to as industrial control systems (ICS), where
computers, sensors, and actuators are interconnected
to manage and operate industrial and other
mechanical systems. ICS are used on land as well as in
the air and on the water. The CAN bus is currently

employed in environments as varied as audio/video
systems and smart building controls to telescopes and
elevators/escalators [3].

2.2 CAN bus standards and operation

This section will describe the CAN bus standards,
protocol layers, and operation in order to establish a
basis for the discussion of security vulnerabilities.

2.2.1 Standards

The SAE J1939 family of standards describes both
the physical and data link layers of the CAN bus, as
well as higher layer protocols for use in a variety of
automotive applications [28]. The generic global CAN
bus specification is contained in four standards from
the International Organization for Standardization
(ISO):
− ISO 11519-1 describes a low-speed (125 kbps) serial

interface [18].
− ISO 11898-1 describes the data link layer frame

format and physical layer signaling [15].
− ISO 11898-2 describes the high-speed (1 Mbps or 5

Mbps) interface [16].
− ISO 11898-3 describes a low-speed, fault-tolerant

interface [17].

The CAN bus multimaster architecture supports a
multihost, broadcast environment where any node can
transmit whenever it has data to send, although rules
must be in place to ensure that end devices do not
transmit over one another. Higher-layer protocols
define the messages that are exchanged via the CAN
bus.

2.2.2 Physical Layer

The CAN bus physical layer is a two-wire bus
(Figure 2). Each node attaches to both wires, called
CAN high (CANH) and CAN low (CANL). By default,
the bus signals are driven to a dominant state (0) with
CANH > CANL; a signal is passively pulled by
resistors to a recessive state (1) with CANH ≤ CANL.
Thus, if more than one node transmits at the same
time, the effect is a logical AND (i.e., if any node
transmits a 0, then 0 will be the resultant signal on the
line; only if all transmitting nodes send a 1 will the
resultant signal be a 1). In order to maintain clock
synchronization, the CAN bus employs a bit-stuffing
mechanism where five consecutive bits of the same
value are followed by a single bit of the opposite
value [6, 7, 11, 12].

The CAN bus has a relatively simple physical
design (Figure 3). The main backbone comprises a
series of point-to-point, twisted-pair cables with a
CAN bus connector at each end. The entire CAN bus
is terminated at each end with a terminating resistor.
Devices are attached to the backbone by placing a T-
connector on the bus; the backbone, then, is really a
sequence of cables that string together the T-
connectors. The T-connector also attaches to a two-
wire pigtail that connects to the CAN bus interface on
compatible devices.

533

Figure 2. CAN bus nodes connected to the two-wire bus.
Note that the bus is terminated with a resister. (Source:
https://cdn10.bigcommerce.com/s-7f2gq5h/product_images
/uploaded_images/can-bus-network-with-transceiver.jpg)

Figure 3. CAN bus architecture.

The CAN bus standard supports speeds up to 1
million bits per second (Mbps) or distances up to
3,300 feet (1,000 meters). As shown in Table 1, the
maximum speed decreases as the end-to-end distance
– and end-to-end signal delay – increases [7, 11, 12].
Table 1. Cable length and maximum speed trade-off. ___
Cable Length Max. Speed ___
1,000 m (3,300 ft) 50 kbps
500 m (1,660 ft) 125 kbps
200 m (650 ft) 250 kbps
100 m (330 ft) 500 kbps
40 m (130 ft) 1 Mbps ___

2.2.3 CAN Bus Frame Types

The bits on the CAN bus are organized into a
protocol data unit called a frame. There are two frame
formats; CAN 2.0A, called the base frame format, uses
an 11-bit Identifier field while CAN2.0B, called the
extended frame format, uses a 29-bit device identifier,
split between an 11-bit Identifier field and an 18-bit
Identifier Extension field [7, 11].

There are four primary types of frames used by the
CAN bus standard. The most common frame type is a
data frame which contains up to 8 bytes of data
transmitted by a device. A remote frame is used by
one device to request data from another; it contains no
data. An error frame is transmitted by any device
detecting any sort of error in a transmission; this
frame causes all other devices to send an error frame
after which the original transmitter will automatically

resend its message. Finally, an overload frame is sent
by a device that is in an overloaded or busy state, and
is used to inject a delay between transmissions.

Figure 4. CAN 2.0A frame with 11-bit identification field
(top) and CAN 2.0B frame with 29-bit identification field
(bottom). (Source: https://cdn.sparkfun.com/assets
/learn_tutorials/5/4/1/CAN_PacketStructureFrames_1.png)

Figure 4 shows the CAN 2.0 frame format for both
basic and extended frames. The fields are:
− Start-of-Frame (SOF) bit (0)
− Base Identifier (11 bits in length)
− Substitute Remote Request (SRR) bit (1) [CAN 2.0B

only]
− Identifier Extension (IDE) bit (0 in CAN2.0A, 1 in

CAN2.0B))
− Extended Identifier (18 bits in length) [CAN 2.0B

only]
− Remote Transmission Request (RTR) bit (0 = Data,

1 = Remote Request)
− Reserved (RES) bits (0)
− Data Length Code (4 bits in length, value 0-8)
− Data (0-8 bytes in length)
− Cyclic Redundancy Check (CRC) field (16 bits in

length)
− CRC-15 value (15 bits in length)
− CRC Delimiter bit (1)

− Acknowledgement (ACK) field (2 bits in length)
− ACK Slot bit (transmitter sends 1, any receiver

can send 0)
− ACK Delimiter bit (1)

− End-of-Frame (EOF) field (1111111)
− Inter-Frame Space (IFS; at least seven 1s)

The CAN bus frame structure is not terribly
efficient in terms of data transfer; an extended frame
with eight bytes of data is at least 135 bits in length,
which means that, at most, 47% of the transmission is
data. For the original designers of automotive
networks, this was not a high price to pay in a
geographically small network with only a few dozen
devices, but it does not necessarily scale well to
physically larger networks with more devices.

2.2.4 Arbitration

The CAN specification employs a broadcast bus so
that all devices hear all transmissions. There is no bus
controller nor is there a primary device to which all
others must communicate; it is essentially a peer-to-
peer network. When more than one station is ready to
transmit, they resolve the conflict through a process
known as arbitration [7, 11]. This process is somewhat
similar to the Carrier Sense, Multiple Access with
Collision Detection (CSMA/CD) scheme used in IEEE
802.3/Ethernet networks.

When a CAN device is ready to transmit, it listens
to the bus to see if the bus is already in use. If another
device is transmitting, the station waits until the line
becomes idle, represented by a sequence of more than
seven consecutive 1 bits (the Inter-Frame space),
before it starts transmitting. If more than one device

534

becomes ready while another station is transmitting,
all will start to transmit at the same time after seeing
the line go idle.

A device continues to monitor the bus while it
transmits. As described in Section 3.2 above, if more
than one station transmits at one time, the resultant bit
signal on the line is the equivalent of a logical AND of
the two inputs. As soon as a station "sees" a bit that is
different from one that it sent, it will stop
transmitting.

Consider this simple example of CAN bus
arbitration. Suppose there two devices that are ready
to transmit, where Device 1 has the 11-bit address
0x5C3 (binary 10111000011) and Device 2 has the
address 0x598 (binary 10110011000). Per the
description of the CAN bus frame, both stations start
by transmitting a Start-of-Frame bit, or a 0, so both
will "see" a 0 on the line.

Figure 5. CAN bus arbitration. Devices 1 and 2 start to
transmit at the same time; Device 2, with the lower address,
"wins" the arbitration.

Next, each station starts to send their 11-bit
identifier (Figure 5). The first four bits of both
addresses are "1011" so each station sees, in turn, the
same bit on the line as the one that they are sending.
When they transmit the fifth bit (Bit 7), Device 1 sends
a 1 and Device 2 sends a 0; the resultant value on the
line is a 0. At that point, Device 1 stops transmitting
but Device 2, seeing the same value as it transmitted,
continues. This same arbitration process works
regardless of how many stations might wish to transit
at once. The station with the lowest address will
always win the arbitration and, in fact, is never aware
that a collision occurred.

2.2.5 Higher-Layer Protocols

The CAN bus standard defines a physical layer
and frame format for the exchange of data. The actual
format of the data is specified in application- and
device-specific higher-layer protocols. The format for
higher-layer messages are described in parameter
group number (PGN) specifications. A PGN defines
the function of a message, the format of the CAN bus
Arbitration field, and the format of the contents in the
Data field.

2.3 Maritime communications over the can bus

This section will briefly describe the primary maritime
communication standard that employs the CAN bus.

2.3.1 Maritime Communication Standards

Just as there are many networks onboard a ship,
there are many communication protocols and
standards. National Marine Electronics Association
(NMEA) standards are the primary specifications
employed on boats and ships of all sizes to
interconnect instrumentation, from a Global
Positioning System (GPS) receiver, navigation display,
and engine monitor to the Electronic Chart Display
and Information System (ECDIS), myriad sensors, and
a variety of controllers (Figure 6).

Figure 6. Maritime instrumentation and the NMEA 2000 bus
on a boat. (Source: https://upload.wikimedia.org/wikipedia
/commons/b/bf/NMEA2000_Modified_motor_yacht.jpg)

There are three dominant NMEA standards for
instrumentation communication within a vessel:
− Introduced in 1983, NMEA 0183 operates on

Electronic Industries Alliance (EIA)-232/422 serial
lines at 4,800 or 38,400 bits per second (bps). This
standard is the basis of International
Electrotechnical Commission (IEC) standard
61162-1, and is employed in International
Telecommunication Union, Radiocommunication
Sector (ITU-R) Recommendation M.1371-5 for
over-the-air transmissions at a rate of 9,600 bps.
Version V4.11 of NMEA 0183 was released in 2018
[22].

− NMEA 2000 was released in 2001 and introduced a
streamlined message format and PGN message set
to support a large variety of maritime devices. This
standard operates at speeds up to 250 kbps over
the CAN bus. NMEA 2000 was adopted as IEC
61162-3; Edition 3.101 was released in 2016 [23].

− OneNet is the newest member of the NMEA family
of standards. Released in 2020, OneNet employs a
superset of the NMEA 2000 message set. OneNet
devices exchange data using Internet Protocol
version 6 (IPv6) packets running over an Ethernet
local area network at speeds up to 10 Gbps and
employs IP Security (IPsec) for secure inter-device
communication [24].

Since NMEA 2000 is the only one of these
standards to operate over the CAN bus, the remainder
of this discussion will focus on the interrelationship of
these two standards.

2.3.2 NMEA 2000

As mentioned above, the NMEA 2000 (aka N2K)
standard is designed for communication between
marine electronics on a vessel and employs the CAN
bus as the physical layer; this protocol is not used for
over-the-air transmissions [2]. Prior maritime
communication standards used point-to-point links

535

between each device and a central controller, whereas
the CAN bus employs a single communications bus
with which to interconnect multiple devices. Use of
the CAN bus yields a much simpler wiring scheme
that requires less overall cable, resulting in a
noticeable reduction in the cost of the wiring,
installation, and maintenance, as well as a lower total
weight of the system [6, 10, 12].

N2K messages are denoted by their name and PGN
[6, 10, 23]. Each PGN definition describes details
about the message, including (Figure 7):
− The binary format of the data
− Message priority (0-7)
− Whether the message fits in a single frame (i.e., it

contains eight or fewer bytes of data) or requires
multiple frames

− Whether the message is addressed to a specified
destination or is a broadcast (global) message [All
transmissions are physically broadcast on the CAN
bus. An addressed PGN is ignored by all devices
other than the one matching the destination
address in the CAN bus transmission; global PGNs
are received by all devices on the bus.]

Figure 7. A sample NMEA 2000 PGN. [2]

Figure 8. NMEA 2000 format of 29-bit Arbitration Fields in
CAN Bus Extended Frame, showing encoding for an
addressed (upper) and global (lower) PGN.

NMEA 2000 specifies use of the CAN bus
Extended Frame format, employing a 29-bit
arbitration field (Figure 8). The first three bits are the
message priority field. Bit 4 is reserved and always set
to zero [2].

The next bit is the leading bit of the 17-bit PGN
identifier. This first bit is, functionally, an

addressed/global indicator. If this bit is a 0, the PGN is
addressed and, if set to 1, the PGN is global. CAN bus
arbitration, then, favors addressed messages over
global messages (the overwhelming majority of PGNs
are global). The setting of this bit affects the encoding
of the next 16 bits, which contain the low-order 16 bits
of the PGN identifier.
− In the case of an Addressed PGN, the next 16 bits

are the sum of the PGN identifier and the 8-bit
address of the intended destination device. As an
example, the ISO Address Claim message has a
PGN identifier of 060928 (0xEE00). If this message
was being sent to a device with address 165 (0xA5),
these 16 bits would be encoded as 0xEEA5.

− In the case of a Global PGN, the next 16 bits are
merely the remainder of the PGN identifier. As a
broadcast message, the destination address is
implied to be 255 (0xFF).

The final eight bits of the Arbitration field contain
the address of the transmitting device (0-254, 0x00-
0xFE). Given the CAN bus arbitration scheme, a lower
priority message will always be sent before a higher
priority message if multiple devices are ready to
transmit at one time. If the priority of multiple
transmissions is the same, lower PGNs take
precedence over higher numbered PGNs; Addressed
PGNs, then, will be sent before Global PGNs. In the
case of multiple Addressed PGNs of the same value, a
lower destination address wins arbitration over a
higher destination address. Finally, if the priority and
PGN are the same, the lowest source address wins
arbitration.

The next field of importance to NMEA 2000 is the
Data Length field, which can take on a value between
zero and eight, indicating the length of the Data field,
which can be from zero to eight bytes. A PGN
containing eight or fewer bytes will be transported in
a single CAN bus frame; larger PGNs – referred to as
multi-frame PGNs – are fragmented and transported
in multiple CAN bus frames. There are two strategies
in NMEA 2000 for managing a multi-frame PGN.
− The fast-packet method supports PGNs with up to

223 bytes of data. In this case, the PGN is assigned
a serial number (0-7) and can be fragmented into
up to 32 CAN bus frames, each of which is
assigned a sequence number (0-31). The
combination of the serial number and sequence
number allows for PGN reassembly.

− The multi-packet method supports PGNs with up
to 1,785 bytes of data. This method uses Request to
Send (RTS) and Clear to Send (CTS) messages
exchanged between the sender and receiver to
control when the individual CAN bus frames can
be sent.

2.4 Sample CAN bus frame and PGN encoding

The complete encoding and transmission of an NMEA
2000 PGN in a CAN bus frame is shown below, with
the intent to remove some of the mystery. This
example will show the encoding of a Position, Rapid
Update message, with a PGN identifier value of
129025 (0x1F801). This is a global message with a
priority of 2; in this example, the sending device has
the address 150 (0x96) [2].

536

Figure 8 shows the format of the 29-bit Arbitration
field. For this example, the field contains the
following values:
− Priority = 0x2 (010)
− Reserved = 0
− High-order PGN identifier bit = 1 (global)
− Low-order 16-bits of PGN identifier = 0xF8-01

(11111000 00000001)
− Source address = 0x96 (10010110)

PGN 129025 has two data fields, namely Latitude
and Longitude, each of which is four bytes in length.
In this example, we will use the coordinates of the
U.S. Coast Guard Research and Development Center
in New London, Connecticut:
− Latitude = 41°20'44.1"N (encoded 0xA0-D5-A4-18)
− Longitude = 072°05'45.7"W (encoded 0x00-05-07-

D5)

Figure 4 shows the entire CAN bus Extended
Frame format. In this example, the frame would be
encoded as follows:
− SOF: 0
− Base ID (first 11 bits of the Arbitration field):

01001111110
− SRR: 1
− IDE: 1
− Extended ID (last 18 bits of the Arbitration field):

000000000110010110
− RTR: 1
− Reserved bits: 00
− Data Length: 0x08 (00001000)
− Data: 0xA0-D5-A4-18-00-05-07-D5 (10100000

11010101 10100100 00011000 00000000 00000101
00000111 11010101)

− CRC-15 value: 101001010110010
− CRC Delimiter bit: 1
− ACK Slot bit: 1
− ACK Delimiter bit: 1
− EOF: 1111111
− IFS: 1111111....

Given this data, the transmitted bit stream would
appear as follows; stuffed bits, to maintain clock
synchronization between the SOF bit and the end of
the CRC field, are shown in bold:

00100111110101100000100001100101101000001010001
01000001110101011010010000011
10000010000010000010101000001111110010101101001
0101100101111111111

The receiving device would interpret this bit
stream as shown in Figure 9.

Figure 9. Interpretation of CAN bus frame using the
Actisense EBL Reader [1].

3 CYBERSECURITY VULNERABILITIES AND
MITIGATIONS

Part I of this paper provided the technical details
about the CAN bus and NMEA 2000 standards
necessary for an appreciation of the cybersecurity
vulnerabilities that are described in this part of the
paper. Part II is decidedly less technical than Part I.

3.1 CAN bus cybersecurity issues

There have been many papers written about CAN bus
security issues. Although these papers typically
address vehicular and agricultural applications, CAN
bus cybersecurity vulnerabilities in ICS and aviation
networks and avionics have also been reported [8, 9].
It is not surprising that papers discussing the
maritime environment are hard to find; although the
CAN bus protocol has been in place since the late-
1980s, it has only been in use in maritime since 2000.
Most of the CAN bus cybersecurity papers have been
published in the last 15 years, which is when
cybersecurity discussions started to become more
mainstream and hacking conferences demonstrated
attacks on vehicular networks.

This section will explore what kind of
vulnerabilities are present that threaten the security of
information on CAN bus network. Information
security is often discussed in terms of the CIA Triad, ,
where CIA stands for confidentiality, integrity, and
availability. This section addresses CAN bus
vulnerabilities in terms of these characteristics of
information. Note that some of the scenarios
described below are impossible with a properly
functioning CAN bus or NMEA 2000-certified device,
but might be quite possible if a rogue device was built
specifically to violate the CAN or N2K standards.

3.1.1 Confidentiality

Confidentiality refers to the secrecy or privacy of
information between a sender and receiver. Neither
the CAN bus nor NMEA 2000 standards address
confidentiality. Both the CAN bus and the NMEA
2000 standard provide a mechanism to send a
message addressed to specific receiver; a sender
needing product information from another network
node, for example, optimizes network bandwidth by
sending an addressed message because it does not
need a response from all of the devices. Similarly, a
command and control message telling a particular
actuator or valve to engage should only be sent to the
necessary target device.

CAN, however, is a broadcast bus and, therefore
every device can hear every transmission [5, 12, 21].
While a properly configured CAN device will not
"listen" to an addressed message if it is not the
intended receiver, a CAN device could be designed to
operate in promiscuous mode and listen to every
transmission.

Similarly, the majority of NMEA 2000 PGNs are
global messages that employ the broadcast address, so
that N2K device sees every global message. Although
an NMEA 2000-certified device will not listen to

537

addressed PGN not intended for this device, a rogue
promiscuous N2K node could read all PGNs.

The use of cryptography could be employed to
ensure confidential communication between two
network nodes [19]. Neither the CAN bus nor NMEA
2000 PGNs have a provision for encryption [2, 4].

At the physical level, it is possible to add a rogue
device to the CAN bus [4, 5, 21]. A CAN bus on a car,
truck, or passenger coach might have dozens of
devices on a network that is 10-100 ft (3-30 m) in
length and difficult to surreptitiously access. A ship
might have several hundred devices on a network that
is more than 1,000 ft (305 m) in length. In any case, it
is straight-forward to covertly add a device to a CAN
bus; all you need is a short length of backbone pigtail
cable, a T-connector to attach to the rogue device, and
an obscure access panel on the ship (Figure 10).

Figure 10. Easy physical access to the CAN Bus on a vessel
can make it simple to add a rogue device.

The ability to physically insert a rogue node on the
CAN bus and the lack of confidentiality in the
transmissions provides many ways in which a
malicious actor can access and, possibly, exfiltrate
information from a vessel's network. An inserted
node, for example, can monitor all or a select subset of
transmissions on the communications bus; this node
can buffer the information for later retrieval by a Bad
Actor or transmit the information to another system
on or off the vessel in real-time.

3.1.2 Integrity

In the vernacular of information security, integrity
refers to the correctness of the message; including
whether the received message is the same one that
was transmitted by the sender, the information is
correct, and the purported sender is actually the one
who sent the message.

Bit integrity is provided on the CAN bus by use of
a CRC calculation; if the receiver calculates a different
checksum value than the one contained in the CRC
field of the message, then this indicates that a bit error
has occurred during transmission. A rogue device can
send spurious bits on the line, forcing such
transmission errors, causing the receiver to ignore a
transmission. A sufficient number of such bit errors
could cause other devices to believe that the
communication bus is unreliable [4, 5, 21].

The CRC provides bit integrity in the CAN bus
only on a per-frame basis. An NMEA 2000 multi-
frame PGN is sent in multiple CAN bus frames, but

there is no mechanism to ensure bit integrity of the
entire PGN message. One of the NMEA 2000 multi-
frame mechanisms is the fast-packet method, which
allows a PGN of up to 223 bytes sent in up to 32 CAN
bus frames; each multi-frame block has a serial
number (0-7) and each frame within the block has a
sequence number (0-31). Suppose there is a fault on
the bus that causes some frames to be lost without the
sender knowing. If the sender continues sending
multi-frame PGNs, it increments the multi-frame
serial number. After eight multi-frames, the serial
number wraps back around to match the serial
number of the block where the fault occurred. It is
possible for a frame from the new block to have a
sequence number that matches a missing frame from
the old block, which will then be used by the receiver
to reassemble the first PGN. This reassembly error
scenario is rare under normal circumstances, but such
an error could be forced by a rogue node.

A rogue N2K device can also send bogus
messages, an attack known as frame injection. As an
example, a device on the network could send fake
NMEA 2000 messages masquerading as the GPS
receiver, compass, or depth gauge, causing false
information to be fed to the navigation console. There
is no CAN bus or NMEA 2000 mechanism to verify
that transmitted data is correct or that the sender is
the device that it purports to be [4, 5, 21, 25].

NMEA 2000 and CAN bus standards provide no
timestamp in the message body, thus providing no
timing integrity. This opens the network to a replay
attack, where a legitimate message is stored and
retransmitted at a later time by a rogue device. As an
example, during an extreme low tide in a narrow
channel, an attacker could replay depth gauge
information from an earlier extreme high tide,
possible causing a ship to run aground [4].

The CAN bus protocol also provides no
authentication mechanism, thus providing no way to
ensure the integrity of the sender's address. CAN bus
nodes derive their device identifier from their serial
number, hardware switch settings, or other
assignment mechanism, but there is actually nothing
that would prevent a device from using an address
already in use on the bus. Similarly, a rogue N2K
device could use the same source address as another
device, and spoof the authentic device and its
information [20, 21, 25].

Another attack on message integrity could occur if
a rogue device on a CAN bus network uses the same
address as another node, in which case it would be
impossible for receivers to distinguish between the
different transmitters. Indeed, this scenario would
allow multiple physical devices to attempt to transmit
different data at the same time.

3.1.3 Availability

The availability of information refers to the ability
of (authorized) users to access data or the network
communications channel whenever they need to.
There are several attacks on availability possible via
the CAN bus.

One of the biggest compromises to availability is a
denial-of-service (DoS) or resource exhaustion attack.

538

These attacks makes a device or the entire network
inaccessible by using up all of the available device
memory or network bandwidth by bogus requests for
service. Consider the example above where a rogue
device purposely uses the same address as another
node on the CAN bus and continues to transmit when
the valid device transmits. The arbitration process is
designed to be resolved during the transmission of the
Arbitration field; transmitting after losing arbitration
is a direct violation of the CAN bus protocol. A
receiver detecting a line state different from its
transmission while sending its Data field will
interpret the event as a transmission error; this will
eventually cause the device to enter a BUS OFF state
and remove itself from the network. A BUS OFF state
is resolved by rebooting the device, the device’s CAN
bus controller, or, in extreme cases, the entire CAN
bus network [5, 8, 25, 27].

Another way to force devices to enter a BUS OFF
state is if one or more are operating at different
transmission rates. NMEA 2000 requires devices to
operate at 250 kbps. If a rogue device was placed on
the network persistently operating at a different
speed, some or all of the other transmitting devices
would eventually enter a BUS OFF state [27].

The CAN bus arbitration process favors devices
with lower addresses. By assuming a low address, a
rogue device could launch a different form of DoS
attack by continually transmitting and blocking out
other devices [5, 21].

Another form of DoS attack is for a rogue node to
send spurious error or overload frames, or otherwise
signal nonexistent error conditions. This can result in
unnecessary network or device resets, causing a
sequence of network outages [5, 25]. A malicious node
can also send false RTS messages and overflow the
receiver's input buffer or send bogus CTS messages to
hold a connection open and usurp the entire network
bandwidth [5].

3.1.4 Additional Observations

If there are applicable lessons from the Stuxnet
virus – designed to attack centrifuges in Iranian
nuclear research facilities and discovered in 2010 –
they are that software can be used to attack hardware
and malware can be hidden in a working system for
years before being activated [30]. It is not too far-
fetched to realize a Trojan Horse scenario where a
CAN bus controller manufacturer builds malware into
a working system. Such a system would work
precisely as designed until its malware was activated,
which could then launch any one of the attack
schemes mentioned above [4, 21].

3.2 CAN bus security protections and migrations

A number of mechanisms have been proposed to
mitigate or reduce CAN bus security vulnerabilities.
While most focus on automotive and vehicular
applications, this section will review several that
might apply to the maritime environment.

The easiest mitigation strategy is network
segmentation, where a network is subdivided into
multiple subnetworks, usually based upon their

function. NMEA 2000 limits the CAN bus to cable
segments of no more than 200 m (650 ft) in length due
to employing a 250 kbps transmission speed. CAN
bus network designers can add security to the system
by separating passenger/crew, entertainment,
engineering, navigation, and other functional
communications onto different network segments.
While this design adds cost to implementation and
maintenance, it limits access to critical systems by
potential Bad Actors [5, 14, 25, 29].

While the use of cryptography would provide
privacy, confidentiality, and authentication for the
CAN bus, the protocol issues in the maritime
environment make the introduction of encryption
methods unlikely. Several methods have been
proposed for adding encryption to the CAN bus, but
all have focused on relatively small, low-traffic
automotive networks that would employ modified,
specialized CAN bus nodes. Encryption is also a drain
on the limited computational and storage resources of
the typical CAN bus node [5, 19, 25, 31]. Shipboard
networks are not geographically small and evolving
maritime equipment is actually producing an
increasing amount of information and network traffic.
The protocol overhead added by encryption
exacerbates the limitations of the CAN bus protocol
that only allows eight bytes of data per transmission;
sending larger messages would necessitate adding
traffic to an already burdened network. In the
maritime environment, it would be possible to
encrypt NMEA 2000 PGNs where the use of
cryptography would be transparent to the CAN bus
protocol, although such methods have not yet been
designed. Theoretically, such mechanisms could be
added to the N2K standard by defining PGNs for key
exchange; use of secret key cryptography would not
increase the size of the PGNs although it would add
to the processing burden of the node [19].

An intrusion detection system (IDS) is commonly
employed on a network to detect, and respond to,
cyberattacks. A host-based IDS is generally software
that resides on a network node, and analyzes the
traffic in and out of the node to detect anomalous
behavior; a network-based IDS is a physical device on
the network that monitors network traffic to detect
aberrant behavior. A host-based IDS would not be
feasible in today's maritime environment as it would
require changes to the devices themselves and add a
computational burden. A network-based IDS,
however, could easily be attached to a CAN bus
without any impact on the network. A number of IDS
methods for the CAN bus have been proposed, all for
automotive networks. The research has shown myriad
advantages and disadvantages, taking into account
the complexity of the algorithms, types of attacks
detected, rate of false positives/negatives, and cost [5,
25]. Designing an IDS for maritime CAN bus
environments seems to be one area that might bear
fruit. Such an IDS would utilize a host-based, passive
monitor that can detect anomalous activity on the
network without adding any traffic to the bus.
Furthermore, it would require no change to the CAN
bus protocol.

Fenster, Lee, and Whitfield [13] proposed a
machine-learning approach to detecting rogue devices
on a CAN bus. Their method identified a subset of

539

PGNs for a specific application environment. They
took advantage of the fact that NMEA 2000 is a
proprietary standard, meaning that an attacker will
not have complete information when attacking an
NMEA 2000 network and, therefore, can be detected.
This is not a CAN bus-specific solution, but it suggests
an interesting approach to defending the maritime
network environment.

4 SUMMARY AND CONCLUSIONS

The CAN bus was developed in the 1980s for the
automotive environment. Developed for a trusted
network during a time when networks could be
trusted, it has no particular security mechanisms or
defenses. Indeed, use of the CAN bus shows little sign
of diminishing 40-plus years later, yet the security
landscape is very different today than it once was;
consider that the hacker community has been
demonstrating successful attacks on automotive CAN
bus networks for more than a decade and CAN bus
attack suites employing open-source code and
inexpensive hardware are now readily available [26].
We can no longer afford to build networks that are
resilient to naturally-occurring errors but not to active
attack.

In today's environment of nearly constant
cyberwarfare, cyberattacks are planned and scheduled
to occur at the convenience of the attacker. Any of the
exploits described here might be exacerbated by the
fact that a ship at sea has access to a limited pool of
personnel and other resources. While a large vessel
might have someone trained to administer shipboard
information technology (IT) systems and deal with
some malfunctions, most are unlikely to have an
information security officer trained to recognize and
respond to a cyberattack. Furthermore, regardless of
the qualifications of the ship's officers and crew, being
at sea limits the options for fixing a problem;
sometimes the only solution is to power essential
devices down.

REFERENCES

1. Actisense: EBL Reader Software,
https://www.actisense.com/acti_software/ebl-reader, last
accessed 2021/03/01.

2. Anderson, L.C., Luft, L.A.: NMEA 2000® Applied.
Presentation at RTCM Meeting, St. Petersburg, FL, May
2002,
https://www.nmea.org/Assets/final_rtcm_2002_white_p
aper.pdf, last accessed 2021/03/01.

3. Applications of Controller Area Network (CAN) Bus:
Polytechnic Hub,
https://www.polytechnichub.com/applications-
controller-area-network-can-bus/, last accessed
2021/03/01.

4. Bozdal, M., Randa, M., Samie, M., Jennions, I.:
Hardware Trojan Enabled Denial of Service Attack on
CAN Bus. Procedia Manufacturing. 16, 47–52 (2018).
https://doi.org/10.1016/j.promfg.2018.10.158.

5. Bozdal, M., Samie, M., Aslam, S., Jennions, I.: Evaluation
of CAN Bus Security Challenges. Sensors. 20, 8, (2020).
https://doi.org/10.3390/s20082364.

6. Copperhill Technologies: A Brief Introduction to the
SAE J1939 Protocol, https://copperhilltech.com/a-brief-

introduction-to-the-sae-j1939-protocol/, last accessed
2021/03/01.

7. Corrigan, S.: Introduction to the Controller Area
Network (CAN). Texas Instruments Application Report,
SLOA 101,
https://www.rpi.edu/dept/ecse/mps/sloa101.pdf, last
accessed 2021/03/01.

8. CSS Electronics: ICS Alert (ICS-ALERT-17-209-01): CAN
Bus Standard Vulnerability. U.S. Department of
Homeland Security, https://us-
cert.cisa.gov/ics/alerts/ICS-ALERT-17-209-01, last
accessed 2021/03/01.

9. CSS Electronics: ICS Alert (ICS-ALERT-19-211-01): CAN
Bus Network Implementations in Avionics. U.S.
Department of Homeland Security, https://us-
cert.cisa.gov/ics/alerts/ics-alert-19-211-01, last accessed
2021/03/01.

10. CSS Electronics: J1939 Explained - A Simple Intro,
https://www.csselectronics.com/screen/page /simple-
intro-j1939-explained/language/en, last accessed
2021/03/01.

11. Di Natale, M.: Understanding and Using the Controller
Area Network. Radical Eye Software,
https://inst.eecs.berkeley.edu/~ee249/fa08/Lectures/hand
out_canbus2.pdf, last accessed 2021/03/01.

12. Farsi, M., Ratcliff, K., Barbosa, M.: An overview of
Controller Area Network. Computing & Control
Engineering Journal. 10, 3, 113-120(7) (1999).

13. Fenster, C., Lee, G., Whitfield, W.: Machine Learning in
Support of Anomalous Device Detection. U.S. Coast
Guard Academy, Electrical Engineering Section (2019).

14. Furuno: Furuno CAN Bus Network Design Guide,
https://www.furunousa.com/-
/media/sites/furuno/document_library/technical_info/int
erfacing_and_installation/interfacing_and_installation/f
uruno_can_bus_network_design.pdf, last accessed
2021/03/01.

15. International Organization for Standardization: Road
vehicles — Controller area network (CAN) — Part 1:
Data link layer and physical signalling. ISO 118981-1.
(2015).

16. International Organization for Standardization: Road
vehicles — Controller area network (CAN) — Part 2:
High-speed medium access unit. ISO 11898-2. (2016).

17. International Organization for Standardization: Road
vehicles — Controller area network (CAN) — Part 3:
Low-speed, fault-tolerant, medium-dependent interface.
ISO 11898-3. (2006).

18. International Organization for Standardization: Road
vehicles — Low-speed serial data communication —
Part 1: General and definitions. ISO 11519-1. (1994).

19. Kessler, G.C.: An Overview of Cryptography,
https://www.garykessler.net/library /crypto.html, last
accessed 2021/03/01.

20. Lin, C., Sangiovanni-Vincentelli, A.: Cyber-Security for
the Controller Area Network (CAN) Communication
Protocol. In: 2012 International Conference on Cyber
Security. pp. 1–7 (2012).
https://doi.org/10.1109/CyberSecurity.2012.7.

21. Matsumoto, T., Hata, M., Tanabe, M., Yoshioka, K.,
Oishi, K.: A Method of Preventing Unauthorized Data
Transmission in Controller Area Network. In: 2012 IEEE
75th Vehicular Technology Conference (VTC Spring).
pp. 1–5 (2012).
https://doi.org/10.1109/VETECS.2012.6240294.

22. National Marine Electronics Association (NMEA):
NMEA 0183 Interface Standard,
https://www.nmea.org/content/STANDARDS/NMEA_0
183_Standard, last accessed 2021/03/01.

23. National Marine Electronics Association (NMEA):
NMEA 2000® Interface Standard,
https://www.nmea.org/content/STANDARDS/NMEA_2
000, last accessed 2021/03/01.

24. National Marine Electronics Association (NMEA):
OneNet Standard for IP Networking of Marine

540

Electronic Devices,
https://www.nmea.org/content/STANDARDS/OneNet,
last accessed 2021/03/01.

25. Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A
Stealth, Selective, Link-Layer Denial-of-Service Attack
Against Automotive Networks. In: Polychronakis, M.
and Meier, M. (eds.) Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 185–206
Springer International Publishing, Cham (2017).

26. Payne, B.: Car Hacking: Accessing and Exploiting the
CAN Bus Protocol. Journal of Cybersecurity Education,
Research and Practice. 2019, 1, (2019).

27. Pfeiffer, O., Keydel, C.: Challenges of CANopen Node
ID assignment, avoiding duplicates. Presented at the 1st
International Mobile Machine Control (MMC)
Conference (2013).

28. SAE International: SAE J1939 Standards Collection on
the Web: Content, https://www.sae.org
/standardsdev/groundvehicle/j1939a.htm, last accessed
2021/03/01.

29. U.S. Coast Guard: Cyber Incident Exposes Potential
Vulnerabilities Onboard Commercial Vessels. Marine
Safety Alert 06-19,
https://www.dco.uscg.mil/Portals/9/DCO%20Documents
/5p/CG-5PC/INV/Alerts/0619.pdf, last accessed
2021/03/01.

30. Zetter, K.: How digital detectives deciphered Stuxnet,
the most menacing malware in history,
https://arstechnica.com/tech-policy/news/2011/07/how-
digital-detectives-deciphered-stuxnet-the-most-
menacing-malware-in-history.ars, last accessed
2021/03/01.

31. Zimmermann, T., Bauer, J., Aschenbruck, N.:
CryptoCAN – Ensuring Confidentiality in Controller
Area Networks for Agriculture. In: Reinhardt, D.,
Langweg, H., Witt, B.C., and Fischer, M. (eds.)
SICHERHEIT 2020. pp. 79–90 Gesellschaft für
Informatik e.V., Bonn (2020).
https://doi.org/10.18420/sicherheit2020_06.

