PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Chirped DBR Reflector on the Absorption Efficiency of Multi-nanolayer Photovoltaic Structures: Wavelength-scale Analysis by the Method of Single Expression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An electromagnetic wavelength-scale analysis of the optical characteristics of multi-nanolayer photovoltaic (PV) structures: without an antireflection coating, with an antireflection coating on the top of the structure, and with both the antireflection coating on the top and a broadband non-periodic (chirped) distributed Bragg reflector (DBR) on the bottom of the structure is performed. All the PV structures studied are based on a Si p-i-n type absorber supported by a metallic layer (Cu) and SiO2 substrate. The top-to-bottom electromagnetic analysis is performed numerically by the method of single expression (MSE). Absorbing and reflecting characteristics of the multi-nanolayer PV structures are obtained. The influence of the thicknesses and permittivities of the layers of the PV structures on the absorbing characteristics of the structures is analyzed to reveal favourable configurations for enhancement of their absorption efficiency. The localizations of the electric component of the optical field and the power flow distribution within all the PV structures considered are obtained to confirm an enhancement of the absorption efficiency in the favorable configuration. The results of the electromagnetic wavelength-scale analysis undertaken will have scientific and practical importance for optimizing the operation of thin-filmmulti-nanolayer PV structures incorporating a chirped DBR reflector with regards to enhancing their efficiency.
Rocznik
Tom
Strony
99--106
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • National Instruments AM LLC, 123 Hovsep-Emin St, EIF Entrance, 0051 Yerevan, Armenia
autor
  • National Instruments AM LLC, 123 Hovsep-Emin St, EIF Entrance, 0051 Yerevan, Armenia
  • National Instruments AM LLC, 123 Hovsep-Emin St, EIF Entrance, 0051 Yerevan, Armenia
autor
  • National Instruments AM LLC, 123 Hovsep-Emin St, EIF Entrance, 0051 Yerevan, Armenia
autor
  • National Institute of Telecommunications, Warsaw, Poland
autor
  • George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Bibliografia
  • [1] G. K. Singh, “Solar power generation by PV (photovoltaic) technology: A review”, Energy, vol. 53, pp. 1–13, 2013.
  • [2] B. Parida, S. Iniyan, and R. Goic, “A review of solar photovoltaic technologies”, Renewable and Sustain. Energy Rev., vol. 15, no. 3, pp. 1625–1636, 2011.
  • [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45)”, Progr. in Photovolt: Res. and Appl., vol. 23, no. 1, pp. 1–9, 2015 (doi: 10.1002/pip.2573).
  • [4] R. W. Miles, K. M. Hynes, and I. Forbes, “Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues”, Progr. in Crystal Growth and Charact. of Mater., vol. 51, no. 1–3, pp. 1–42, 2005.
  • [5] Y. Hamakawa, Ed., Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications. Springer, 2004.
  • [6] A. G. Aberle, “Thin-film solar cells”, Thin Solid Films, vol. 517, no. 17, pp. 4706–4710, 2009.
  • [7] I. J. Kuzma-Filipek, F. Duerinckx, E. Van Kerschaver, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells”, J. of Appl. Phys., vol. 104, no. 7, pp. 073529-1–073529-8, 2008 (doi: 10.1063/1.2993753).
  • [8] T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells”, IEEE Trans. Electron Devices, vol. ED-31, no. 5, pp. 711–716, 1984.
  • [9] J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells”, IEEE Trans. Electron Devices, vol. 38, no. 8, pp. 1925–1934, 1991.
  • [10] J. K. Selj, D. Young, and S. Grover, “Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells”, Energy Procedia, vol. 77, pp. 248–252, 2015.
  • [11] P. Yeh, Optical Waves in Layered Media. N.Y.: Willey, 1988.
  • [12] D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors”, IEEE J. Quantum Elect., vol. 28, pp. 514–524, 1992.
  • [13] H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan, B. Witzigmann, and F. Roemer, “Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelengthscale analysis by the method of single expression”, Opto-Electron. Rev., vol. 18, no. 4, pp. 438–445, 2010 (doi: 10.2478/s11772-010-0049-0).
  • [14] M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells”, Optics Express, vol. 16, no. 8, pp. 5385–5396, 2008 (doi: 10.1364/OE.16.005385).
  • [15] F. Duerinckx et al., “Simulation and implementation of a porous silicon reflector for epitaxial silicon solar cells”, Progr. in Photovolt: Res. and Appl., vol. 16, pp. 399–407, 2008.
  • [16] J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors”, ACS Photonics, vol. 1, no. 9, pp. 768–774, 2014 (doi: 10.1021/ph500107b).
  • [17] H. V. Baghdasaryan, “Method of backward calculation”, in Photonic Devices for Telecommunications: How to Model and Measure, G. Guekos, Ed. Springer, 1999, pp. 56–65.
  • [18] H. V. Baghdasaryan and T. M. Knyazyan, “Problem of plane EM wave self-action in multilayer structure: An exact solution”, Optical and Quant. Electron., vol. 31, no. 9, pp. 1059–1072, 1999 (doi: 10.1023/A:1007024312874).
  • [19] H. V. Baghdasaryan and T. M. Knyazyan, “Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression”, Optical and Quant. Electron., vol. 32, no. 6-8, pp. 869–883, 2000.
  • [20] H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan, B. Witzigmann, and F. Roemer, “Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelengthscale analysis by the method of single expression”, Opto-Electron. Rev., vol.18, pp. 438–445, 2010.
  • [21] H. V. Baghdasaryan, Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics. Yerevan: Chartaraget, 2013.
  • [22] H. V. Baghdasaryan, T. M. Knyazyan, T. T. Hovhannisyan, G. R. Mardoyan, and M. Marciniak, “Wavelength-scale analysis of influence of chirped DBRs on optical characteristics of multinanolayer Photovoltaic Cells”, in Proc. of 18th In. Conf. on Transp. Opt. Netw. ICTON 2016, Trento, Italy, 2016, We.P.33, 5 pages.
  • [23] E. D. Palik, Ed., Handbook of Optical Constants of Solids. Academic Press, 1998.
  • [24] A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of catalyst on refractive index tenability of porous silica antireflective coatings by sol-gel technique”, J. Phys. Chem. C, vol. 111, no. 23, pp. 8291–8298, 2007.
  • [25] H. V. Baghdasaryan, T. M. Knyazyan, T. H. Baghdasaryan, and G. G. Eyramjyan, “Development of the Method of Single Expression (MSE) for analysis of plane wave oblique incidence on multilayer structures having complex permittivity and permeability”, in Proc. of 10th Int. Conf. on Transp. Opt. Netw. ICTON 2008, Athens, Greece, 2008, Th.A1.4, pp. 250–254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cde9904-21b0-4e54-93ef-2a76b6cc520f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.