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Abstract: Designing regression models based on high dimensional (e.g. genetic) data sets
through exploring linear separability problem is considered in the paper. The linear regres-
sion model designing has been reformulated here as the linear separability problem. Ex-
ploring the linear separability problem has been based on minimization of the convex and
piecewise linear (CPL) criterion functions. The minimization of the CPL criterion functions
was used not only for estimating the prognostic model parameters, but also for most effective
selecting feature subsets (model selection) in accordance with the relaxed linear separability
(RLS) method. This approach to designing prognostic models has been used in experiments
both with synthetic multivariate data, and with genetic data sets containing censored values
of dependent variable. The quality of the prognostic models resulting from the linear sepa-
rability postulate has been evaluated by using the measure of the model discrepancy and the
estimated classification error rate. In order to reduce the bias of the evaluation, the value of
the model discrepancy and the classification error have been computed in different feature
subspaces, in accordance with the cross-validation procedure. A series of new experiments
described in this paper shows that the designing of regression models can be based on the lin-
ear separability principle. More specifically, the high-dimensional genetic sets with censored
dependent variable can be used in designing procedure. The proposed measure of prognostic
model discrepancy can be effectively used in the search for the optimal feature subspace and
for selecting the linear regression model.

Keywords: data mining, interval regression, model selection, relaxed linear separability

1. Introduction

Multivariate regression analysis includes many techniques aimed at modelling the lin-
ear relationship between dependent variable and independent variables. In this case,
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the value of a dependent variable is predicted to be the linear combination of some
independent variables. The linear regression function is based on a finite number of
unknown parameters that are estimated from the learning data set. The least squares
method of the parameters estimation is commonly used in the regression analysis
[11].

It has been recently demonstrated that the task of linear regression model design-
ing can be formulated as a linear separability problem [3,5]. The linear separability
problem has been investigated for many years in the context of the theory of neu-
ral networks and pattern recognition [1,9]. We use the convex and piecewise linear
(CPL) criterion functions in our approach to the linear separability problem [2]. The
basis exchange algorithms, which are similar to the linear programming, allow to
efficiently find the minimal value of the CPL criterion function [6]. The parameters
that create the minimum of an adequate CPL criterion function can be also used in
the definition of the optimal regression models.

The perceptron criterion function belongs to the family of the CPL criterion
functions [2]. The perceptron criterion function was modified by adding a regular-
ization component for the purpose of the feature subset selection in accordance with
the relaxed linear separability (RLS) method [4]. This regularization component used
in the RLS method has a similar structure to those used in the Lasso regression [14].
The relaxed linear separability (RLS) method of feature subset selection is based on
minimization of the modified perceptron criterion function. This method allows for a
successive reduction of unnecessary features while preserving the linear separability
of the learning sets.

Prognostic models in the area of survival analysis are designed on the basis of the
so-called censored data sets. The Cox model plays a fundamental role in the survival
analysis [12]. The modified perceptron criterion function can be also used for design-
ing prognostic models (selection) on the basis of censored data sets. The possibility
of the regression (prognostic) models selection from high-dimensional genetic data
set with censored dependent variable is considered in the paper. Particular attention
is paid to evaluating the quality of prognostic models obtained in this way.

The novelties introduced in the paper include: a) introduction of a new prognos-
tic model quality measure, i.e. discrepancy coefficient, b) the series of new experi-
ments proving the correctness of the concept adopted.
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2. Methods

2.1 Different types of regression learning sets

Multivariate regression models are based on linear (affine) transformations of n-
dimensional feature vectors x[n] taken from a given feature space F [n] (x[n] ∈ F [n])
on points t on the line (t ∈ R1):

t(x[n]) = w[n]T x[n]+w0 (1)

where w[n] = [w1, ...,wn]
T ∈ Rn is the parameters’ (weight) vector and w0 is the

threshold (intercept coefficient) (w0 ∈ R1).
Properties of the model (1) depend on the choice of the parameters w[n] and w0.

The weights wi and the threshold w0 are estimated from regression learning sets. In
the case of classical regression analysis the learning sets are structured as follows:

C0 = {x j[n]; t j}= {x j1, ...,x jn; t j},
where j = 1, ...,m0

(2)

Each object O j in the set C0 is characterized by values x ji of n independent vari-
ables (features) Xi, and by the observed value t j (t j ∈ R1) of the dependent (target)
variable T . Components x ji of the j-th feature vector x j[n] could be treated as nu-
merical results of n standardized examinations of the given object O j (x ji ∈ {0,1} or
x ji ∈ R1). Each feature vector x j[n] can be also treated as a point in the n-dimensional
feature space F [n] [9].

In case of classical regression, the parameters w[n] and w0 are estimated on the
basis of set C0 (2), in accordance with the method of least squares in such a way that
the sum of the squared differences (t j − t̂ j)

2 between the observed target variable y j

and the modelled variable t̂ j = w[n]T x j[n]+w0 (1) is minimal [11].
In case of interval regression learning sets CI , additional knowledge about values

t j of the dependent variable T of particular objects O j is represented by the intervals
[t−j , t

+
j ] (t−j < t+j ) instead of exact values t j (1) [8,10]:

CI = {(x j[n], [t−j , t
+
j ]),where j ∈ JI} (3)

where JI is the set of indices j of mR objects O j (feature vectors x j[n]), t−j is the
lower bound (t−j ∈ R1) and t+j is the upper bound (t+j ∈ R1) of unknown value t j

(t−j < t j < t+j ) of the target variable T , which accompanies the j-th feature vector
x j[n].
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Let us introduce the right censored set CR and the left censored set CL:

CR = {x j[n], [t−j ,+∞)},where j ∈ JR (4)

and

CL = {x j[n],(−∞, t+j ]},where j ∈ JL (5)

The set JR contains the indices j of mR objects O j (feature vectors x j[n]) which are
characterized by right censored values of the dependent variable T [12]. Similarly,
the set JL contains the indices j of such objects O j, that are characterized by left
censored values of the dependent variable T . It is assumed, that the sets CR and CL

are disjoined (CR ∩CL = /0). The censored sets CR (4) or CL (5) can be treated as a
special type of the interval regression set CI (3) in which either t+j =+∞ or t−j =−∞.

The classical learning set C0 (2) can be transformed into the interval learning
set CI (3) through introducing artificial boundary values t−j = t j − ε and t+j = t j + ε,
where ε is a small positive parameter (margin) (ε > 0):

C′
I = {x j[n], [t j − ε, t j + ε]},where j = 1, ...,m0 (6)

The following linear inequalities can be expected in case of prognostic model
(1) designing on the basis of the interval learning set CI (3):

(∀ j ∈ JI) t−j < w[n]T x j[n]+w0 < t+j (7)

or equivalently
(∀ j ∈ JI) w[n]T x j[n]+w0 − t−j > 0

and w[n]T x j[n]+w0 − t+j < 0
(8)

The feature vectors x j[n] belonging to the censored sets CR (4) or CL (5) can be linked
in a similar way to the below linear inequalities:

(∀ j ∈ JR) w[n]T x j[n]+w0 − t−j > 0 (9)

and

(∀ j ∈ JL) w[n]T x j[n]+w0 − t+j < 0 (10)

We can note that censoring of some feature vector x j[n] (t+j =+∞ or t−j =−∞) results
in removing one inequality from the set of inequalities (8).
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2.2 Linear separability of the positive set Z+[n+ 2] and the negative set
Z−[n+2]

The interval learning set CI (3) can be represented as the below sum of the disjoined
subsets C′

I , CR (4), and CL (5):

CI =C′
I ∪CR ∪CL (11)

where the subset C′
I contains such intervals [t−j , t

+
j ] that are not censored (the con-

straints t−j and t+j are finite):

C′
I = {(x j[n], [t−j , t

+
j ]) : −∞ < t−j < t+j <+∞} (12)

The subsets CR (4), CL (5) and C′
I (12) are used in defining the augmented feature

vectors z+j [n+2] and z−j [n+2] based on the linear inequalities (8), (9), and (10):

(∀x j[n] ∈C′
I ∪CR) z+j [n+2] = [x j[n]T ,1,−t−j ]

T (13)

and
(∀x j[n] ∈C′

I ∪CL) z−j [n+2] = [x j[n]T ,1,−t+j ]
T (14)

Let us introduce the positive set Z+[n+2] and the negative set Z−[n+2] which
are composed of (n+2)-dimensional vectors z+j [n+2] (13) and z−j [n+2] (14):

Z+[n+2] = {z+j [n+2]} and
Z−[n+2] = {z−j [n+2]} (15)

Definition 1. The positive set Z+[n+2] and the negative set Z−[n+2] (15) are lin-
early separable, if and only if there exists a parameter vector v′[n+ 2] (v′[n+ 2] ∈
Rn+2), for which all the below inequalities are fulfilled [3,5]:

(∃v′[n+2]) (∀z+j [n+2] ∈ Z+[n+2])
v′[n+2]T z+j [n+2]≥ 1

and (∀z−j [n+2] ∈ Z−[n+2])
v′[n+2]T z−j [n+2]≤ 1

(16)

The parameter vector v′[n+2] defines the below hyperplane H(v′[n+2]) in the
feature space F [n+2] (z[n+2] ∈ F [n+2]):

H(v′[n+2]) = {z[n+2] : v′[n+2]T z[n+2] = 0} (17)
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If all the inequalities (16) are fulfilled, then the hyperplane H(v′[n+2]) (17) separates
the sets Z+[n+2] and Z−[n+2] (15). This means that each augmented feature vector
z+j [n+2] (13) from the set Z+[n+2] is situated on the positive side of the hyperplane
H(v′[n+2]) (17) (v′[n+2]T z+j [n+2]> 0) and each augmented feature vector z−j [n+
2] (14) from the set Z−[n + 2] is situated on the negative side of this hyperplane
(v′[n+2]T z+j [n+2]< 0).

The desirable inequalities (8), (9), (10) can be represented as the linear separa-
bility problem (16), if the parameter vector v[n+2] has the below structure [3]:

v[n+2] = [v1, ...,vn+2]
T = [w[n]T ,w0,β]T (18)

where β is the interval parameter (β ∈ R1).

The parameter vector v[n+2] (18) allows to define the below prognostic model:

y(x[n]) = (w[n]/β)T x[n]+w0/β (19)

The following Lemma can be proved [3]:

Lemma 1. All the desirable inequalities (8), (9), (10) are fulfilled by the prognostic
model y(x[n]) (19) defined by the parameters vector v′[n+ 2] = [w′[n]T ,w′

0,β′] (18)
if and only if the hyperplane H(v′[n+2]) (17) fully separates (16) the sets Z+[n+2]
and Z−[n+2] (15).

If the number n of features Xi is larger than the number m of the vectors z+j [n+2]
(13) and z−j [n+ 2] (14) in the sets Z+[n+ 2] and Z−[n+ 2] (15), then such sets are
usually linearly separable [9]. The most interesting are cases when linear separability
(16) occurs in the opposite circumstances, when the number m of feature vectors is
large in comparison to the number n of features.

The concept of linear separability has been used for many years in the theory
of neural networks and in pattern recognition methods. The linear separability has
been used in the proof of the convergence of the error-correction algorithm - classi-
cal learning algorithm of neural networks [9]. The optimal linear classifiers in pat-
tern recognition can be designed through exploration of the linear separability of the
learning sets [2].

2.3 Convex and piecewise linear (CPL) criterion function defined on the
positive set Z+[n+2] and the negative set Z−[n+2]

The positive set Z+[n+ 2] and the negative set Z−[n+ 2] (15) are composed of the
(n+2) - dimensional vectors z+j [n+2] (13) and z−j [n+2] (14), adequately. The sets
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Z+[n+2] and Z−[n+2] (15) are linearly separable if and only if the inequalities (16)
are fulfilled.

The below convex and piecewise-linear (CPL) penalty functions φ+
j (v[n+ 2])

and φ−
j (v[n+2]) are introduced for solving inequalities (16):

(∀z+j [n+2])

φ+
j (v[n+2]) =

1−v[n+2]T z+j [n+2]
i f v[n+2]T z+j [n+2]< 1

0
i f v[n+2]T z+j [n+2]≥ 1

(20)

(∀z−j [n+2])

φ−
j (v[n+2]) =

1+v[n+2]T z−j [n+2]
i f v[n+2]T z−j [n+2]>−1

0
i f v[n+2]T z−j [n+2]≤−1

(21)

The perceptron criterion function Φ(v[n+2]) is defined as the weighted sum of
the penalty functions φ+

j (v[n+2]) (20) and φ−
j (v[n+2]) (21) [2]:

Φ(v[n+2]) = ∑
j

α+
j φ+

j (v[n+2])+∑
j

α−
j φ−

j (v[n+2]) (22)

where non-negative parameters α+
j (α+

j > 0) determine the importance of particular
vectors z+j [n + 2] (13) and parameters α−

j (α+
j > 0) determine the importance of

particular vectors z−j [n+ 2] (14). Standard values of the parameters α+
j and α−

j can
be provided as follows [2]:

(∀z+j [n+2]) α+
j = 1/(2m+) and

(∀z−j [n+2]) α−
j = 1/(2m−)

(23)

where m+ is the number of the vectors z+j [n+ 2] (13) and m− is the number of the
vectors z−j [n+2] (14).

The optimal vector v∗[n+2] constitutes the global minimum of the CPL criterion
function Φ(v[n+2]) (22):

(∀v[n+2]) Φ(v[n+2])≥ Φ(v∗[n+2]) = Φ∗ ≥ 0 (24)

where v∗[n+2] = [w∗[n]T ,w∗
0,β∗]T , and w∗[n] = [w∗

1, ...,w
∗
n]

T .
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The basis exchange algorithms which are similar to linear programming, allow
to find the minimal value Φ∗ (24) of the function Φ(v[n+ 2]) (22) and the optimal
parameters v∗[n + 2] efficiently, even in case of large, multidimensional data sets
Z+[n+2] and Z−[n+2] (15) [3,5].

The following remarks describe useful properties of the minimal value Φ∗ =
Φ(v∗[n+2]) (24) of the perceptron criterion function Φ(v[n+2]) (22) [2]:

Remark 1. detection of the linear separability The minimal value Φ∗ = Φ(v∗[n+2])
(24) of the criterion function Φ(v[n+ 2]) (22) with the standard values (23) of the
parameters α+

j and α−
j is contained in the interval < 0,1 >

0 ≤ Φ∗ ≤ 1 (25)

where Φ∗ = 0 if and only if the positive set Z+[n+2] and the negative set Z−[n+2]
(15) are linearly separable (16).

Remark 2. the positive monotonicity property The omission of an arbitrary pair
(x j[n], [y−j ,y

+
j ]) from the learning set CI (3) can not increase the value of Φ∗ (24)

(the value of Φ∗ usually decreases).

Remark 3. the negative monotonicity property The omission of any of the component
x ji (feature Xi) in all the m feature vectors x j[n] = [x j1, ...,x jn]

T (3) can not reduce the
value of Φ∗ (24) (the value of Φ∗ usually increases).

Remark 4. the invariancy property The minimal value Φ∗ (24) of the criterion func-
tion Φ(v[n+2]) (22) does not depend on linear (affine), nonsingular transformations
of feature vectors x j[n] (3):

i f (∀ j ∈ {1, ...,m}) x′j[n] = Ax j[n]+b[n],
where A−1 exists, then Φ∗

x′ = Φ∗
x

(26)

where b[n] is a constant vector (b[n] ∈ Rn), and Φ∗
x′ is the minimal value (24) of the

perceptron criterion function Φx′(v[n+ 2]) (22) defined on elements of the learning
set C′

I = {(x′j[n], [y
−
j ,y

+
j ]), where j ∈ JI} (3).

The optimal parameters v∗[n + 2] = [w∗[n]T ,w∗
0,β∗]T (24) that constitute the

minimal value Φ∗ = Φ(v∗[n+2]) (24) of the criterion function Φ(v[n+2]) (22) are
used in the definition of the below CPL prognostic model [5]:

t∗(x[n]) = (w∗[n]T x[n]+w∗
0)/β∗ (27)
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Lemma 2. If the minimal value Φ∗ = Φ(v∗[n + 2]) (24) of the criterion func-
tion Φ(v[n + 2]) (22) is equal to zero (Φ∗ = 0) in the extreme point v∗[n + 2] =
[w∗[n]T ,w∗

0,β∗]T with β∗ > 0, then the optimal prognostic model (27) fulfills all the
inequalities (7):

(∀ j ∈ JI) t−j < (w∗[n]/β∗)T x j[n]+w∗
0/β∗ < t+j (28)

The above conditions can be proved directly from the linear separability inequal-
ities (16). If the minimal value Φ∗ (24) is greater than zero (Φ∗ > 0) in the extreme
point v∗[n+2], then the optimal prognostic model (27) satisfies the majority but not
all the inequalities (28) [5].

2.4 The modified criterion function Ψ(v[n+2])

The perceptron criterion function Φ(v[n+2]) (22) has been modified in order to allow
selecting features task though including feature penalty functions ϕi(v[n+2]) and the
costs γi (γi ≥ 0) related to particular features Xi [4]. The feature penalty functions
ϕi(v[n+2]) are defined in the below manner:

(∀i ∈ {1, ...,n})
ϕi(v[n+2]) = |ei[n+2]T v[n+2]|= |wi|

(29)

The modified criterion function Ψ(v[n+ 2]) is the sum of the basic function in
the form of perceptron criterion function Φ(v[n+2]) (20) and regularization compo-
nents with the penalty functions ϕi(v[n+2]) [4]:

Ψλ(v[n+2]) =
= Φ(v[n+2])+λ∑i∈{1,...,n} γiϕi(v[n+2]) =
= Φ(v[n+2])+λ∑i∈{1,...,n} γi|wi|

(30)

where λ (λ ≥ 0) is the cost level, and γi are feature costs (γi ≥ 0).
The standard assumption about the feature costs γi is that these costs are equal

to one:
(∀i ∈ {1, ...,n}) γi = 1 (31)

The modified criterion function Ψλ(v[n+2]) (30) is used in the relaxed linear sepa-
rability (RLS) method of feature subset selection [2]. The regularization component
λ∑γi|wi| used in the modified criterion function Ψλ(v[n+2]) (30) is similar to these
used in the Lasso method [14]. The Lasso method was developed as a part of regres-
sion analysis for the model selection [14]. The main difference between the Lasso and
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the RLS methods is the type of the basic criterion function. This difference affects the
computational techniques used to minimize the modified criterion functions. The per-
ceptron criterion function Φ(v[n+2]) (22) plays fundamental role in case of the RLS
method. Both the basic criterion Φ(v[n+ 2]) (22), as well as the penalty functions
ϕi(v[n+ 2]) (29) are convex and piecewise-linear (CPL). As a result, the modified
criterion function Ψλ(v[n+ 2]) (30) is also convex and piecewise-linear (CPL). The
basis exchange algorithms allow to find efficiently the optimal vector of parameters
(vertex) v∗λ[n+ 2] constituting the minimum of the criterion function Ψλ(v[n+ 2])
(30) with the cost level λ:

(∃v∗λ[n+2]) (∀v[n+2])
Ψλ(v[n+2])≥ Ψλ(v∗λ[n+2]) = Ψ∗

λ
(32)

where v∗λ[n + 2] = [w∗
λ[n]

T ,w∗
λ0,β

∗
λ]

T = [w∗
λ1, ...,w

∗
λn,w

∗
λ0,β

∗
λ]

T (24). In the RLS
method the optimal parameters w∗

λi are used in the feature reduction rule below:

(w∗
λi = 0) => (the f eature Xi is reduced) (33)

We can remark that the features Xi which have the weights w∗
λi equal to zero (w∗

λi = 0)
in the optimal vertex v∗λ[n+2] (32) can be reduced (33) without changing the optimal
prognostic model y∗(x[n]) (27) which is defined by the parameters v∗λ[n+2] (32).

It can be proved that the vector v∗λ[n+2] which constitutes the minimum (32) of
the criterion function Ψλ(v[n+2]) (30) can be located on the optimal vertex v∗k [n+2]
(v∗λ[n+ 2] = v∗k [n+ 2]) linked to some basis B∗

k [n+ 2] in the (n+ 2) - dimensional
feature space F [n+2] [2]:

B∗
k [n+2]v∗k [n+2] = δ∗k [n+2] (34)

where B∗
k [n+ 2] is the non-singular matrix (basis) with rows consisting of (n+ 2)

linearly independent vectors z+j [n+2] ( j ∈ J+k ), z−j [n+2] ( j ∈ J−k ) or by unit vectors
ei[n+2] (i ∈ I0

k ), and γ∗k [n+1] is the margin vector with components equal to 1, −1
or 0, adequately to the below equations fulfilled in the vertex v∗k [n+2]:

(∀ j ∈ J+k ) z+j [n+2]T v∗k [n+2] = 1, and
(∀ j ∈ J−k ) z−j [n+2]T v∗k [n+2] =−1, and
(∀i ∈ I0

k ) ei[n+2]T v∗k [n+2] = 0
(35)

where J+k , J−k and I0
k , are the sets of indices of the basis vectors z+j [n+2], z−j [n+2],

and ei[n+2], adequately.
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Remark 5. The features Xi which are linked to the unit vectors ei[n+ 2] (i ∈ I0
k ) in

the optimal basis B∗
k [n+2] (34) can be reduced (33) in the related vertex v∗k [n+2] =

[w∗
k [n]

T ,w∗
k0,β

∗
k ]

T = [w∗
k1, ...,w

∗
kn,w

∗
k0,β

∗
k ]

T .

The Remark 5 can be justified by the below implication (33) [4]:

(∀i ∈ I0
k )

(ei[n+2]T v∗k [n+2] = 0) => (w∗
ki = 0) =>

=> (the f eature Xi is reduced)
(36)

The minimal value Ψλ(v∗λ[n+2]) (32) of the CPL criterion function Ψλ(v[n+2])
(30) in the vertex v∗k [n+ 2] represents an equilibrium between the "force" of linear
separability (16) and the "force" of features costs determined by the parameters λ and
γi. We can remark that an increase of the value of the parameter λ in the criterion func-
tion Ψλ(v[n+2]) (30) causes an increase in the number of the unit vectors ei[n+2] in
the basis B∗

k [n+2] (34) linked to the optimal vertex v∗k [n+2] (32). As a consequence,
an increase of the cost level λ value in the minimized function Ψλ(v[n+ 2]) (30)
results in an increased number of the reduced features Xi (36). Furthermore, the di-
mensionality of the feature F [n] can be reduced arbitrarily in accordance with the rule
(36) by a sufficient increase of the parameter λ in the criterion function Ψλ(v[n+2])
(30). Such method of feature selection is called relaxed linear separability (RLS) [4].
A successive increase of the cost level λ in the minimized function Ψλ(v[n+2]) (30)
allows to reduce the less important (redundant) features Xi and to generate descending
sequence of feature subspaces Fk[nk] (Fk[nk]⊃ Fk+1[nk+1], where nk > nk+1) [4]:

F [n]→ F1[n1]→ ...→ Fk[nk],
where 0 ≤ λ0 < λ1 < ... < λk

(37)

Each feature subspace Fk[nk] in the above sequence has been linked to a certain
value λk of the cost level λ in the criterion function Ψλ(v[n+2]) (30). The sequence
(37) of the feature subspaces Fk[nk] is generated in a deterministic manner based on
the positive set Z+[n+2] and the negative set Z−[n+2] (15) in accordance with the
relaxed linear separability (RLS) method [4]. Each step Fk[nk]→ Fk+1[nk+1] has been
realized by a minimal increase λk → λk+1 = λk +∆k (where ∆k > 0) of the cost level
λ in the criterion function Ψλ(v[n+2]) (30).

A high value λk of the cost level λ in criterion function Ψλ(v[n+ 2]) (30) can
cause replacement of all vectors z+j [n+2] (13) or z−j [n+2] (14) in the basis B∗

k [n+2]
(34) linked to the optimal vertex v∗k [n+2] (32) by unit vectors ei[n+2] and the solu-
tion v∗k [n] = 0 could appear. Such solution is not a constructive one, because it means
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that all features Xi have been eliminated (33). A compromise solution is needed,
which would allow to preserve the most important feature subset. Such postulate can
be realized through an adequate stop criterion in the process of the feature space
F [n] reduction (37). The stop criterion could be based on evaluating the quality of
particular feature subspaces Fk[nk] in the sequence (37).

In accordance with the relaxed linear separability (RLS) approach to feature
subset selection, the quality of particular subspaces Fk[nk] (37) is evaluated on the
basis of the optimal linear classifier designed in this subspace [4]. A better optimal
linear classifier means a better feature subspace Fk[nk]. In the context of this paper, a
better feature subspace Fk[nk] (37) should guarantee a better prognostic model (27).

2.5 Evaluation of the CPL regression models based on non censored data

Let us consider the learning set CI (3) composed of the disjoined subset of not cen-
sored data C0 (2) and the censored subsets CR (4), and CL (5):

CI =C0 ∪CR ∪CL (38)

The right censored subset CR (4) as well as the left censored subset CL (5) could be
empty. The nonempty subset C0 (2) of feature vector x j[n] with not censored values
t j can be transformed into the subset C′

I (6) with the intervals [t j −ε, t j +ε] in order to
define the augmented vectors z+j [n+ 2] (13) and z−j [n+ 2] (14). Each element x j[n]
of the not censored data set C0 (2) generates two augmented vectors z+j [n+ 2] and
z−j [n+2]:

(∀x j[n] ∈C0)
z+j [n+2] = [x j[n]T ,1,−t j + ε]T

z−j [n+2] = [x j[n]T ,1,−t j − ε]T
(39)

Each element x j[n] of the censored subsets CR (4) or CL (5) generates only one aug-
mented vector z+j [n+2] (13) or z−j [n+2] (14):

(∀x j[n] ∈CR) z+j [n+2] = [x j[n]T ,1,−t j− ε]T (40)

and
(∀x j[n] ∈CL) z−j [n+2] = [x j[n]T ,1,−t j+ ε]T (41)

The convex and piecewise-linear (CPL) criterion functions Φ(v[n+2]) (22) and
Ψλ(v[n + 2]) (30) were defined on the elements z+j [n + 2] (39) or (40) of the set
Z+[n+ 2] (15) and on the elements z−j [n+ 2] (39) or (41) of the set Z−[n+ 2] (15).
The parameters v∗[n+ 2] = [w∗[n]T ,w∗

0,β∗]T constituting the minimal value (24) of
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the criterion functions Φ(v[n+2]) (22) were used for defining the prognostic model
t∗(x[n]) (27). The CPL prognostic model (27) allows to compute the predicted values
t∗j for the feature vectors x j[n] belonging to the not censored data set C0 (2):

(∀x j[n] ∈C0) t∗j = a[n]T x j[n]+b (42)

where
a[n] = w∗[n]/β∗ and b = w∗

0/β∗ (43)

We can compare the predicted values t∗j with the observed values t j from the
not censored data set C0 (2). In the case of the classical regression, the quality of the
prognostic model (42) is evaluated on the basis of the sum of the squared differences
(t j − t∗j )

2 between the observed variable t j and the modelled t∗j value (42).
We are using the absolute differences |t j − t∗j | instead of the squared differences

(t j − t∗j )
2 in the prognostic model (42) evaluation because the absolute differences

|t j − t∗j |, in the same way as the criterion functions Φ(v[n+2]) (22) and Ψλ(v[n+2])
(30) can be linked to the L1 norm [2]. On the other hand, the squared differences
(t j − t∗j )

2 are linked to the L2 (Euclidean) norm [11].
The discrepancy coefficient Qa of the prognostic model (42) is determined as

the mean value of the absolute differences |t j − t∗j |:

Qa = ∑
j
|t j − t∗j |/m0 (44)

where the summation is over the all m0 elements of the not censored data set C0 (2).
The CPL prognostic model (42) appears as a result of attempted linear separation

(16) of the positive set Z+[n+ 2] from the negative set Z−[n+ 2] (15). This linear
separation (16) also allows to define the below linear classifier of the augmented
vectors z j[n+2] (39), (40), (41) [3]:

i f v∗[n+2]T z j[n+2]≥ 0,
then z j[n+2] is located in the set Z+[n+2]

i f v∗[n+2]T z j[n+2]< 0,
then z j[n+2] is located in the set Z−[n+2]

(45)

The quality of the linear classifiers (45) can be evaluated in the usual way by
using the error estimator (apparent error rate) ea(v∗[n+2]) as the fraction of wrongly
classified elements z j[n+2] (39), (40), (41) of the sets Z+[n+2] and Z−[n+2] (15):

ea(v∗[n+2]) = ma(v∗[n+2])/m (46)
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where m is the number of all elements z+j [n+ 2] (39), (40) of the set Z+[n+ 2] (15)
and the elements z−j [n+ 2] (39), (41) of the set Z−[n+ 2] (15) and ma(v∗[n+ 2]) is
the number of these elements which are wrongly allocated by the rule (45).

The optimal parameters v∗[n + 2] in the classification rule (45) are obtained
through the minimization of the criterion function Φ(v[n+2]) (22) which is defined
on m elements z+j [n + 2] and z−j [n + 2] of the sets Z+[n + 2] and Z−[n + 2] (15),
adequately.

It is known that if the same vectors z j[n+2] are used for classifier (45) designing
and classifier evaluation (46), then the evaluation results are too optimistic (biased).
In order to reduce the bias of the apparent error rate estimator ea(v∗[n+ 2]) (46) is
usually replaced by the cross-validation error rate eCV E(v∗[n+2]) [2].

It was assumed in the earlier approach to the CPL prognostic model (27) evalua-
tion that a "good" prognostic model should have the lowest error rate eCV E(v∗[n+2])
estimated through the cross-validation procedure [2]. The discrepancy coefficient Qa

(44) can also be used in the CPL prognostic model (42) evaluation. The discrepancy
coefficient Qa (44), similarly to the error rate ea(v∗[n+2]) can be a biased evaluation
of the quality of the prognostic model t∗(x[n]) (27). The cross-validation (leave-one-
out) procedure can be used for the bias reduction of the discrepancy coefficient Qa

(44). The leave-one-out evaluation QCV E of the discrepancy coefficient can be defined
for this purpose:

QCV E = ∑
i

Q′(i)/m0 (47)

where the above summation is over all of the m0 temporarily removed elements of
the non-censored data set C0 (2) and

Q′(i) = ∑
j∈J(i)

|t j − t∗j (i)|/(m0 −1) (48)

where the symbol J(i) stands for the set of indices j of all m0 − 1 elements x j[n] of
the set C0 (2) apart from the i-th element xi[n], which is temporarily removed.

The parameters v∗i [n+ 2] of the prognostic model t∗j (i) (42) in the above ex-
pression (48) were determined through the minimization of the criterion function
Φi(v[n+ 2]) (22) which was defined on all the m0 − 1 elements of the set C0 (2),
except for the i-th element xi[n].

In line with the modification proposed in this paper of the relaxed linear sep-
arability (RLS) method, the quality of particular subspaces Fk[nk] in the descending
sequence (37) is evaluated based on the cross-validation values QCV E (47) of the dis-
crepancy coefficient Qa (44). It has been assumed here that a better feature subspace
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Fk[nk] (37) allows to design CPL prognostic models t∗(x[nk]) (42) characterized by a
lower cross-validation value QCV E (47) of the discrepancy coefficient.

The minimal value of the discrepancy coefficient QCV E (47) is used in this paper
as the stop criterion for the process of feature space F [n] reduction described by the
descending sequence (37).

3. Experimental results and discussions

3.1 A toy model identification

The toy data set used in the experiment was generated by the authors. Seven points x j

( j = 1, ...,7) were arbitrarily selected on the line (x j ∈ R1). The values t j of dependent
variable Y were generated for each point x j in accordance with the below model (1):

(∀ j ∈ {1, ...,7}) t j = 1− x j +ζ j (49)

where the numbers ζ j (ζ j ∈ R1) were generated in accordance with the normal prob-
ability distribution (ζ j ∼ N(0,σ)) with the expected value zero and the variance σ2

equal to three different values (0.3, 0.5, 0.7). The generated data sets are given in
Table 1.

Table 1. Three toy data sets.

Data 1 Data 2 Data 3
x j t j = 1− x j t j = 1− x j +ζ j t j = 1− x j +ζ j t j = 1− x j +ζ j

(σ2 = 0.3) (σ2 = 0.5) (σ2 = 0.7)
-5 6 6.113 6.370 5.671
-4 5 5.237 3.627 5.018
-2 3 1.605 4.209 1.995
0 1 1.036 0.335 1.062
1 0 -0.456 -0.459 -0.419
3 -2 -2.544 -2.319 -0.514
5 -4 -4.302 -3.232 -3.741

In this case, the classical learning set C0 (2) and the interval learning set CI (3)
have the below form:

C′
1 = {x j, t j, where j = 1, ...,7} (50)

C′
2 = {x j, [t j − ε, t j + ε], where j = 1, ...,7} (51)

where ε = 0.5. The value of the parameter ε specifying the length of the interval
[t j − ε, t j + ε] was set to 0.5 in all experiments described in this subsection.
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The prognostic (regression) model designed on the basis of the learning sets C′
1

(50) or C′
2 (51) has the following form, depending on parameters w1 (w1 ∈ R1) and

w0 (w0 ∈ R1):
t(x) = w1x+w0 (52)

The parameters w1 and w0 were estimated based on the learning set C′
1 (50) by using

the classical method of least squares [13]. The parameters w1 and w0 of the model
(52) were also estimated based on the interval learning set C′

2 (51) through mini-
mization (24) of the CPL criterion function Φ(v[n+ 2]) (22). The results of these
experiments are shown in the Table 2 and the Figure 1.

Table 2. Parameters w1 and w0 of the model (52) estimated from the toy data sets.

classical regression interval regression
w1 w0 w1 w0

Data 1 -1.038 0.659 -1.060 0.801
Data 2 -0.956 0.946 -0.960 1.035
Data 3 -0.887 1.043 -0.941 0.965

Fig. 1. The model y = 1−x identification by a classical regression and the model t = 1−x identification
by an interval regression.

From Figure 1, it can be seen that the interval regression allowed to estimate
the parameters w1 and w0 which are similar to the model of classical regression from
this toy dataset. We can also note that he lowest identification quality of the model
t = 1− x (45) has been obtained in the case of Data 3 set which is characterized by
the highest level of noise.

46



Feature selection for prognostic models by linear separation of survival genetic data sets

The right censored set C′
R (4) and the left censored set C′

L (5) have been also
generated randomly from the toy data sets collected in the Table 1. The indicator of
censoring δ j (δ j = 1 or δ j = 0) has been used for this purpose. The value δ j = 1
implied that the interval [t j − ε, t j + ε] (51) was censored to the form (4) or (5). In
other words, if the value δ j = 1 appeared, the interval [t j − ε, t j + ε] was replaced
with equal probability p = 0.5 by [−∞, t j + ε] or by [t j − ε,+∞]. The value δ j = 0
implied that the interval [t j − ε, t j + ε] (51) was not changed. The censoring process
was controlled by the parameter pc called probability of censoring (0 ≤ pc ≤ 1). The
censoring (δ j = 1) was drawn for each interval [t j −ε, t j +ε] (51) with the probability
p = pc. The CPL prognostic models (27) obtained for several values of the parameter
pc (probability of censoring) were sketched in Figure 2.

Fig. 2. The CPL prognostic models t(x) (52) estimated from the toy data sets (Table 1) for several values
of the censoring probability pc.

We can remark that even learning sets with the full censoring (pc = 1) allow to
obtain a reasonably good prognostic model t(x) (52).

3.2 Prognostic model selection on synthetic data

The synthetic data set contained m = 100 objects (feature vectors) x j[n] ( j =
1, ...,100). Each object x j[n] was represented by n = 100 features Xi (i = 1, ...,100).
The value x ji of each feature Xi of particular object x j[n] were drawn from a uniform
distribution on the unit interval [0,1] (Xi ∈ [0,1]). The value of the dependent variable
t j was computed as the bellow linear combination (linear key) with coefficients α ji
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of the selected components x ji of the feature vector x j[n]:

(∀ j ∈ {1, ...,m})
t j = 3x j5 +4x j10 +7x j16 +2x j37 +6x j45+

+3x j50 +3x j67 +8x j72 + x j84 + x j91 +10
(53)

The set of 10 features Xi and their coefficients α ji in the above linear key were
defined arbitrarily before the experiment. The linear key (53) was used for generating
the classical regression learning set C0 = {(x j[n];y j)} (2).

Some of the dependent values y j in this set C0 were censored. The below scheme
of censoring was adopted for the synthetic data set C0. The censoring process was
controlled, as in the case of the toy data set, by the parameter pc (0 ≤ pc ≤ 1). The
censoring (δ j = 1) was drawn for each element x j[n] of the learning set C0 (2) with
the probability pc. As a result, mc elements x j[n] were selected to be censored. If the
value δ j = 1 was drawn, the dependent value t j was replaced by the censored value
tc

j (0 ≤ tc
j ≤ t j). The right censored value tc

j was randomly generated in accordance
with the triangle probability distribution determined on the interval [0, t j].

To allow the use of the CPL functions Φ(v[n+2]) (22) and Ψλ(v[n+2]) (30) the
non-censored elements (x j[n]; t j) of the classical learning set C0 (2) were transformed
in the interval learning set C′

2 (51):

C′
2 = {x j[n], [t j − ε, t j + ε]} (54)

where ε = 0.1.
The CPL prognostic model (27) was defined in the experiment with the synthetic

data set by the parameters v∗[n+2] = [w∗[n]T ,w∗
0,β∗]T (22) constituting the minimal

value (24) of the criterion functions Φ(v[n+2]) (22), where n = 100. The leave-one-
out evaluation of the discrepancy coefficients Qa (44) and ea(v∗[n+ 2]) (46) were
used in the experiment for the purpose of the bias reduction. In accordance with the
leave-one-out procedure, the criterion functions Φ(v[n+2]) (22) was defined for each
time by using m−mc − 1 non censored elements x j[n], because one non-censored
element x j[n] was used only for evaluating the resulting model (42). As a result, the
criterion functions Φ(v[n+2]) (22) were defined on 2(m−mc −1)+mc augmented
vectors z+j [n+2] and z−j [n+2] (39), (40), (41).

The results of the experiments on the synthetic data set are shown in Figure 3.
Two types of curves (the learning curve and the testing curve) are used to evaluate
the CPL prognostic model (27) in different feature subspaces Fk[nk] (37), generated
in accordance with the RLS method [4]. The same prognostic model (27) has been
evaluated in a two manners (two curves) by using the same discrepancy coefficient
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Qa (44). The learning curve shows the averaged values of the coefficient Qa (44)
computed on all m−mc non censored elements (x j[n]; t j) of the data set C0 (2). The
testing curve shows the averaged values of the coefficient QCV E (47) computed on
m temporarily removed elements (x j′ [n]; t j′) of the data set C0 (2). In the case of the
learning curve, the averaging is taking place from m calculations of the coefficient
Qa (44). In the case of the testing curve, the discrepancy coefficient QCV E (47) is
computed in different feature subspaces Fk[nk] (37).

Fig. 3. The discrepancy evaluation Qa (44) (learning curve) and QCV E (47) (testing curve) of the model
(27) in different feature subspaces Fk[nk] (37) on the base of synthetic data with a few probabilities of
censoring pc.

We can note that the minimal value of the discrepancy coefficient QCV E (47)
on the Figure 3 is located in the feature subspace Fk[nk] (37) of dimensionality nk
approximately equal to 10 (nk ≈ 10), as it was assumed in the linear key (53). Both
the features Xi and their coefficients α ji constituting the linear key (53) were approx-
imately reproduced as a result of the CPL prognostic model designing. The linear
key (53) was most accurately reproduced from the synthetic data set with the lowest
probability of censoring pc = 0.2.

The results of these experiments on the synthetic data set show the usefulness of
a criterion based on the discrepancy coefficient QCV E (47) fore discovering the linear
key (decision rule) separating two linear sets in a reasonably good manner.

3.3 Prognostic model selection based on the Adrenocortical carcinoma data set

The Adrenocortical carcinoma [7] data set consists of patient samples suffering from
this type of cancer. The set contains 79 objects, each described by 20533 features
(age, gender and gene expression values). Each object has a specified time value
measured from start of observation until death (on average 915 days) or censoring
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(on average 1765 days). 51 patients (64.5%) were still alive at the final follow-up
visit (censoring observations).

On the basis of 79 objects from the Adrenocortical carcinoma data set, 107
elements z+j [n+2] (13) and z−j [n+2] (14) were created. The RLS method was applied
to the newly formed data sets (15).

The main objective of this experiment was to examine the possibility of the CPL
prognostic models t∗(x[nk]) (27) evaluation in different feature subspaces Fk[nk] (37)
by using the discrepancy coefficient QCV E (47). More specifically, the possibility of
using the minimal value of the discrepancy coefficient QCV E (47) as the stop criterion
for the descending sequence of subspaces Fk[nk] (37) was examined. The optimal
feature subspace F∗

k [nk] defined by this stop criterion was the last stage of the feature
reduction procedure (35).

We can observe in Figure 4 that the minimal value of the discrepancy coefficient
QCV E (47) has been reached in the feature subspace F∗

k [nk] (37) with dimensionality
nk of about 26 (nk ≈ 26).

Fig. 4. The discrepancy evaluations Qa (44) (learning curve) and QCV E (47) (testing curve) of the model
(27) in different feature subspaces Fk[nk] (37) of the Adrenocortical carcinoma data set.

The prognostic model t∗(x[nk]) (27) was also evaluated, by using the cross vali-
dation error eCV E(v∗[n+2]) [2] of the linear classifier (45) of the augmented feature
vectors z+j [n+2] (13) and z−j [n+2] (14). The optimal feature subspace F∗

k [nk] indi-
cated in the sequence (37) by the minimal value of the discrepancy coefficient QCV E

(47) is similar to the optimal feature subspace identified in cross validation error
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eCV E(v∗[n+ 2]) (see Figure 5). This result might have some practical meaning, be-
cause it is an additional confirmation that our methodology is correct. The next time,
the optimal feature subspace F∗

k [nk] was identified through an attempted linear sep-
aration of the sets Z+[n+ 2] and Z−[n+ 2] (15) of the augmented feature vectors
z+j [n+2] (13) and z−j [n+2] (14). The augmented feature vectors z+j [n+2] (13) and
z−j [n+ 2] (14) can represent both the non-censored (39), as well as censored cases
(40), (41). As a result, the criterion based on the attempted linear separation of the
sets Z+[n+2] and Z−[n+2] (15) is less clear than the criterion based on the minimal
discrepancy QCV E (47) intuitively assessed only on the non-censored cases (37).

Fig. 5. The classifier error evaluations ea (46) (AE) and eCV E (CVE) of the model (27) in different
feature subspaces Fk[nk] (37) of the Adrenocortical carcinoma data set.

4. Conclusions

Designing prognostic models (27) through exploring linear separability has been ex-
amined in the paper, based on examples of genetic data set with censored survival
times. The task of the linear regression model designing has been reformulated as
the problem of the linear separability of the augmented sets Z+[n+2] and Z−[n+2]
(15). The augmented sets Z+[n+ 2] and Z−[n+ 2] (15) allow to represent both the
non-censored, as well as the censored learning sets in the regression analysis.

The exploration of the linear separability of the augmented sets Z+[n + 2]
and Z−[n + 2] (15) has been performed through minimization (24) of the per-
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ceptron (CPL) criterion function Φ(v[n + 2]) (22). The parameters v∗[n + 2] =
[w∗[n]T ,w∗

0,β∗]T constituting the minimum (24) of the criterion function Φ(v[n+2])
(22) have been used in the definition of the optimal prognostic model t∗(x[n]) (27).

The modified CPL criterion function Ψλ(v[n+ 2]) (30) has been used for gen-
erating a sequence of feature subspaces Fk[nk] (37) in accordance with the relaxed
linear separability (RLS) method of feature subset selection (model selection).

The prognostic models t∗(x[n]) (27) designed in different feature subspaces
Fk[nk] (37) have been validated through the discrepancy coefficient QCV E (47) com-
puted in accordance with the cross-validation (leave one out) procedure.

The proposed method of the prognostic models designing has been tested both
on synthetic data set with the hidden linear key (49), as well as on real genetic data
set Adrenocortical carcinoma [7] with censored survival times.

The experiments carried out on the genetic data set Adrenocortical carcinoma
demonstrated, that the RLS method allows to find subsets of few genes Xi with good
prognostic properties, even if the number of genes Xi is large at the beginning. The
selection of optimal subsets of genes Xi was based on the minimal value of the dis-
crepancy coefficient QCV E (47) computed in accordance with the leave-one-out pro-
cedure. The modified RLS method based on the discrepancy coefficient QCV E (47) has
been proposed and applied for the purpose of the CPL prognostic models selection.

The linear key based on 10 variables Xi (53) was hidden in the synthetic data
set composed of n = 100 variables (features) Xi. The RLS method allowed to find
the model (53) hidden in the learning set containing m = 100 feature vectors x j[n].
The model t(x[n]) (42) was approximately identified even when all values t j of the
dependent variable T were censored.

The linear prognostic model (27) have been designed in the reduced feature
subspaces Fk[nk] (37) in a deterministic manner, even though the dimensionality of
the genetic data sets was high and the survival times censored.

One of the promising results of the experiments is the possibility to use the dis-
crepancy measure QCV E (47) in the modified RLS method of the CPL prognostic
models selection. The stop criterion for the sequence (37) of reduced feature sub-
spaces Fk[nk] can be based on the minimal value of discrepancy coefficient QCV E

(47) (see Figure 4).
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SELEKCJA CECH NA POTRZEBY MODELI
PROGNOSTYCZNYCH POPRZEZ LINIOWĄ

SEPARACJĘ ZBIORÓW DANYCH GENETYCZNYCH
DOTYCZĄCYCH ANALIZY PRZEŻYCIA

Streszczenie W artykule rozważane jest projektowanie modeli regresji opartych na wyso-
kowymiarowych (np. genetycznych) zbiorach danych poprzez badanie problemu separacji
liniowej. Projektowanie modelu regresji liniowej zostało tu przeformułowane jako problem
separacji liniowej. Eksploracja problemu separacji liniowej opiera się na minimalizacji wy-
pukłej i odcinkowo-liniowej (CPL) funkcji kryterialnej. Minimalizacja funkcji kryterialnej
typu CPL została wykorzystana nie tylko do oszacowania parametrów modelu prognostycz-
nego, ale również do skutecznego wyboru podzbioru cech (selekcji modelu) zgodnie z me-
todą relaksacji separacji liniowej (RLS). Takie podejście do projektowania modeli progno-
stycznych zostało wykorzystane w eksperymentach zarówno z syntetycznymi danymi wielo-
wymiarowymi, jak i do zbiorów danych genetycznych zawierających cenzurowane wartości
zmiennej zależnej. Jakość modeli prognostycznych otrzymywanych w oparciu o postulat li-
niowej separacji została oceniona przy użyciu miary rozbieżności modelu i szacowanego
wskaźnika błędu klasyfikacji. W celu zmniejszenia obciążenia oceny, obliczono wartości
rozbieżności modelu i błędu klasyfikacji w różnych podprzestrzeniach cech, zgodnie z pro-
cedurą walidacji krzyżowej. Seria nowych eksperymentów opisanych w niniejszym opra-
cowaniu pokazuje, że projektowanie modeli regresji może być oparte na zasadzie separacji
liniowej. W szczególności, w procedurze projektowania można użyć wysokowymiarowych
zbiorów genetycznych o cenzurowanej zmiennej zależnej. Proponowana miara rozbieżności
modelu prognostycznego może być skutecznie wykorzystana w poszukiwaniu optymalnej
podprzestrzeni cech i selekcji modelu regresji liniowej.

Słowa kluczowe: eksploracja danych, regresja interwałowa, selekcja modelu, relaksacja se-
paracji liniowej

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/2018.
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