PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical Modeling and Numerical Analysis of Nonstationary Plane-Parallel Flows of Viscous Incompressible Fluid by R-Functions and Galerkin Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is dedicated to nonstationary plane-parallel flows of viscous incompressible fluid in finite simply connected domains. Theorem of the solution uniqueness is presented. The method of successive approximation, the Galerkin method and the R-functions method are used to obtain the numerical solution, which was tested on the problem with known solution.
Twórcy
autor
  • Department of Applied Mathematics, Kharkiv National University of Radio Electronics
autor
  • Department of Applied Mathematics, Kharkiv National University of Radio Electronics,
Bibliografia
  • 1. Anderson J. D., Jr. 1995. Computational Fluid Dynamics: the basics with applications. New York: McGraw-Hill, 547.
  • 2. Artiukh A. V. 2012. Numerical analysis of conjugate heat transfer in an enclosure region by the R-functions and Galerkin methods, Theoretical and applied aspects of cybernet-ics. Proceedings of the 2nd international sci-entific conference of students and young sci-entists (Kyiv, Cybernetics Faculty of Taras Shevchenko National University of Kyiv). Kyiv. 98–100.
  • 3. Artyukh A. 2012. Mathematical and numeri-cal modeling of natural convection in an en-closure region with heat-conducting walls by R-functions and Galerkin Method, Radioelec-tronics and informatics, №4. 103–108.
  • 4. Batluk V. and Batluk V. 2012. Scientific bases of creation of dust catchers. ECON-TECHMOD An International Quarterly Jour-nal On Economics In Technology, New Tech-nologies And Modelling Processes. Vol. 1, No 4, 3-7.
  • 5. Batluk V., Basov M. and Klymets’. 2013. Mathematical model for motion of weighted parts in curled flow. ECONTECHMOD An International Quarterly Journal On Economics In Technology, New Technologies And Mod-elling Processes. Vol. 2, No 3, 17-24.
  • 6. Batluk V., Batluk V., Basov M. and Dorun-dyak L. 2012. Mathematic model of the pro-cess of dust catching in an apparatus with a movable separator. ECONTECHMOD An In-ternational Quarterly Journal On Economics In Technology, New Technologies And Modelling Processes. Vol. 1, No 1, 13-16.
  • 7. Burggraf O. R. 1966. Analytical and numeri-cal studies of the structure of steady separated flow, J. Fluid Mech., V. 24. 113–151.
  • 8. Constantin, P.; Seregin, G. 2010. Hölder continuity of solutions of 2D Navier–Stokes equations with singular forcing, Nonlinear partial differential equations and related top-ics, Amer. Math. Soc. Transl. Ser. 2 229, Providence, RI: Amer. Math. Soc. 87–95
  • 9. Donea J., Huerta A. 2003. Finite Element Methods for flow Problems, London: Wiley, 350 p.
  • 10. Fedotova E.A. 1985. The atomic and spline approximation of solutions of boundary value problems of mathematical physics, Ph. D. the-sis: Kharkov. In Russian.
  • 11. Ferziger J. H. M. Peric. 2002. Computation-al Methods for Fluid Dynamics,– Berlin: Springer, 423.
  • 12. Girault V. 1979. Finite Element Approxima-tion of the Navier-Stokes Equations, Berlin: Springer, 200 p.
  • 13. Kolosova S.V., Sidorov M.V. 2003. Appli-cation of the R-functions”, Vіsn. KNU. Ser. Applied. Math. and mech. № 602,. 61–67. In Russian.
  • 14. Kravchenko V.F., Rvachev V.L. 1998. R-functions Theory and Methods of the Solution of Boundary Value Problems of Complex Domains, International Conference on Sys-tems, Signals, Control, Computers (SSCC'98), Durban, South Africa, Invited Session R-functions and Atomic Functions, September 22-24.
  • 15. Ladyženskaja O.A.; Solonnikov V.A.; Ural'ceva N. N. 1968. Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs 23, Providence, RI: American Mathematical Society, XI+648
  • 16. Ladyzhenskaya O.A. 1969. The Mathemati-cal Theory of viscous Incompressible Flow 1969. (2nd ed.)
  • 17. Landau L.D., Lifshitz E.M. 2003. Course of Theoretical Physics. Vol. 6. Hydrodynamics. Moscow: Fizmatlit. In Russian.
  • 18. Loitsyansky L.G. 2003. Mechanics of the Liquid and Gas. Moscow: Drofa,. In Russian.
  • 19. Michlin S.G. 1966. The numerical perfor-mance of variational method, Moscow: Nau-ka. In Russian.
  • 20. Rvachev V. L. 1982. Theory of R-functions and Some Applications. Kiev: Naukova Dumka. In Russian.
  • 21. Pearson С.Е. 1965. A computational method for viscous flow problems, Journal of Fluid-Mechanics, 21, №4, 611—622.
  • 22. Rvachev V.L. 1963. On the analytical de-scription of some geometric objects”, Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 765–767. In Russian.
  • 23. Rvachev V.L., SheikoT.I. 1995. R- functions boundary value problems in mechanics, Appl. Mech. Rev, 48, N4, 151-188.
  • 24. Samarskiy A.A. and Vabishevich P.N. 2009. Numerical methods of solution to inverse problems of mathematical physics, Editorial URSS, Moscow. In Russian.
  • 25. Samarskiy A.A., Vabishevich P.N. 2003. Computational heat transmission, Editorial URSS, Moscow.In Russian
  • 26. Shapiro V. 2007. Semi-analytic geometry with R-Functions, Acta Numerica, Cambridge University Press, 16, 239-303
  • 27. Sidorov M.V. 2002. Application of R-functions to the calculation of the Stokes flow in a square cavity at low Reynolds”, Radioe-lectronics and Informatics. Issue 4. 77 – 78. In Russian.
  • 28. Sidorov M.V. 2002. Construction of struc-tures for solving the Stokes problem, Radioe-lectronics and Informatics, № 3. 52–54. In Russian.
  • 29. Temam Roger. 2001. Navier–Stokes Equa-tions, Theory and Numerical Analysis, AMS Chelsea, 107–112.
  • 30. Zienkiewicz O.C., Taylor R.L. 2000. The finite Element Method. Vol. 3: Fluid Dinamics. Oxford: BH.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cd47767-42f8-452b-94a6-439b179db450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.