Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The awareness of making decisions in an imprecise environment has resulted in considering the inventory system under a fuzzy approach. The effects of uncertain demand have been finding increased application in many inventory systems. Uncertainty creates complicated situations for the manufacturer in making decisions. Markets have become more competitive as a result of technological advancements. The effect of inflation on the overall cost of the inventory system is useful in providing a tool for the analysis of inventory decisions. This study intended to estimate the effect of different fuzzy numbers on a manufacturer's annual joint expected total cost. The comparative study of this proposed model has been considered for two different fuzzy numbers with the defuzzification technique as the centroid method. The optimization technique has been used to minimize the producer’s joint expected total cost under the condition mentioned earlier, and the model is validated numerically.
Czasopismo
Rocznik
Tom
Strony
32--48
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
- Department of Mathematics and Statistics, Gurukul Kangri, Haridwar-249404, India
autor
- Department of Mathematics, Graphic Era, Dehradun-248001, India
autor
- Department of Mathematics and Statistics, Gurukul Kangri, Haridwar-249404, India
autor
- Department of Mathematics, S.G.R.R. (PG) College, Dehradun-248001, India
Bibliografia
- [1] AGRAWAL, S., SINGH R. K., AND MURTAZA, Q. Forecasting product returns for recycling in Indian electronics industry. J. Adv. Manage. Res. 11, 1 (2014), 102–114. DOI: 10.1108/JAMR 02 2013 0013.
- [2] APPADOO, S. S., BECTOR, C. R., AND BHATT, S. K. Fuzzy EOQ model using possibilistic approach. J. Adv. Manage. Res. 9, 1 (1973), 139–164. DOI: 10.1108/09727981211225707.
- [3] BASU, M., SENAPATI, S., AND BANERJEE, K. A multi-item inventory model for deteriorating items under inflation and permissible delay in payments with exponential declining demand. OPSEARCH 43 1 (2006), 71–87. DOI: 10.1007/bf03398763.
- [4] BERA, U. K., MAHAPATRA, N. K., AND MAITI, M. An imperfect fuzzy production-inventory model over a finite time horizon under the effect of learning. Int. J. Math. Oper. Res. 1 (2009), 351–371.
- [5] BORZECKA, H. Multi-criteria decision making using fuzzy preference relations. Oper. Res. Dec. 3 (2012), 5–21.
- [6] BUZACOTT, J. A. Economic order quantities with inflation. J. Oper. Res. Soc. 26, 3 (1975), 553–558. DOI: 10.1057/jors.1975.113.
- [7] CHEN, S. H., AND CHANG, S. M. Optimization of fuzzy production inventory model with unrepairable defective products. Int. J. Prod. Econ. 113, 2 (2008), 887–894.
- [8] CHEN, S. H., AND HSIEH, C. H. Representation, ranking, distance, and similarity of L R type fuzzy number and application. AJIIPS 6, 4, (2000), 217–229.
- [9] CHEN, S. H.,WANG,C.C., AND RAMER, A.Backorder fuzzy inventory model under function principle. Inf. Sci. 95, 1–2, (1996), 71–79. DOI: 10. 1016/S0020 0255(97)10070 6.
- [10] CHEN, S. H., WANG, S. T. AND CHANG, S. M. Some properties of graded mean integration representation of LR type fuzzy numbers. Tamsui Oxf. J. Math. Sci. 22, 2 (2006), 185–208.
- [11] DE, S. K., KUNDU, P. K., AND GOSWAMI, A. An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate. J. Appl. Math Comp. 12, 1–2 (2003), 251–260. DOI: 10. 1007/bf02936197.
- [12] DE, P. K., RAWAT, A., A fuzzy inventory model without shortages using triangular fuzzy number. Fuzzy Inf. Eng. 3, 1 (2011), 59–68.DOI: 10. 1007/s12543 011 0066 9.
- [13] DE, S. K. Solving an EOQ model under fuzzy reasoning. Appl. Soft Comp. 99 (2020), 106892. DOI: 10. 1016/j. asoc. 2020. 106892.
- [14] DUTTA, D., AND KUMAR, P. Fuzzy inventory model without shortage using trapezoidal fuzzy number with sensitivity analysis. IOSR-JM 4, 3 (2012), 32–37. DOI: 10. 9790/5728 0433237.
- [15] GARAI, T., CHAKRABORTY, D., AND ROY, T. K. Fully fuzzy inventory model with price-dependent demand and time varying holding cost under fuzzy decision variables. J. Int. Fuzzy Syst. 36, 4 (2019), 3725–3738. DOI: 10. 3233/jifs-18379.
- [16] GLOCK, C. H., SCHWINDL, K., AND JABER, M. Y. An EOQ model with fuzzy demand and learning in fuzziness. Int. J. Serv. Oper. Manage. 12 (2012), 90–100.
- [17] HARRIS, F. W. What quantity to make at once. In The Library of Factory Management, Vol. 5. Operation and Costs. A. W. Shaw Company, Chicago, 1915, pp. 47–52.
- [18] HEMAPRIYA, S., AND UTHAYAKUMAR, R. An inventory model with uncertain demand and lost sales reduction under service level constraint. Int. J. Syst. Assur. Eng. Manage. 8, S2 (2017), 1399–1418. DOI: 10.1007/s13198-017-0611-y.
- [19] YAZDI K. A., KAVIANI, M. A., SARFARAZ, A. H., CÁRDENAS-BARRÓN, L. E., WEE H. M., AND TIWARI, S. A. Comparative study on economic production quantity (EPQ) model under space constraint with different kinds of data. Grey Systems: Theory and Application 9, 1 (2019), 86–100. DOI: 10.1108/GS0820180035.
- [20] KAZEMI, N., EHSAN, E., AND JABER, M. Y. An inventory with backorder with fuzzy parameters and decision variables. Int. J. Approx Reason 51, 8 (2010), 964–972. DOI: 10.1016/j.ijar.2010.07.001.
- [21] KAZEMI, N., SHEKARIAN, E., AND CÁRDENAS-BARRÓN, L. E. Incorporating human learning into a fuzzy EOQ inventory model with backorders. Computers & Industrial Engineering 87 (2015), 540–542. DOI: 10.1016/j.cie.2015.05.014.
- [22] KOSINSKI, W., MUNIAK, R., AND KOSINSKI, W. K. A model for optimizing enterprise’s inventory costs. A fuzzy approach. Oper. Res. Dec. 23, 4 (2013), 39–54. DOI: 10.5277/ord130404.
- [23] KUMAR, S. An EOQ model for deteriorating items with time dependent exponential demand rate and penalty cost. Oper. Res. Dec. 29, 3 (2019), 37–49. DOI: 10.5277/ord190303.
- [24] KUNDU, A., GUCHHAIT, P., PANIGRAHI, G., AND MAITI, M. An EOQ model for deteriorating item with promotional effort and credit linked demand. Eur. J. Ind. Eng. 13, 3 (2019), 368. DOI: 10.1504/ejie.2019.100015.
- [25] LEE, H.-M., AND YAO, J. S. Economic production quantity for fuzzy demand quantity, and fuzzy production quantity. Eur. J. Oper. Res. 109, 1 (1998), 203–211. DOI: 10.1016/s0377-2217(97)00200-2.
- [26] MAHESWARI, S., SHALINI, M., AND YOOKESH, T. L. Defuzzification formula for modelling and scheduling a furniture fuzzy project network. Int. J. Eng. Adv. Technol. 9, 1S5 (2019), 279–283. DOI: 10.35940/ijeat.A1048.129219.
- [27] MIRZAZADEH A., SEYYED ESFAHANI, M. M., AND FATEMI GHOMI, S. M. T. An inventory model under uncertain inflationary conditions finite production rate and inflation-dependent demand rate for deteriorating items with shortages. Int. J. Syst. Sci. 40, 1 (2009), 21–31. DOI:10.1080/00207720802088264.
- [28] NEMTAJELA, N., AND MBOHWA, C. Relationship between inventory management and uncertain demand for fast moving consumer goods organizations. Proc. Manuf. 8 (2017), 699–706. DOI: 10.1016/j.promfg.2017.02.090.
- [29] PAL, S., MAITI, M. K., AND MAITI, M. An EPQ model with price discounted promotional demand in an imprecise planning horizon via Genetic Algorithm. Comp. Ind. Eng. 57 (2009), 181–187.
- [30] PATHAK, S., KAR, S., AND SARKAR, S. Fuzzy production inventory model for deteriorating items with shortages under theeffect of time dependent learning and forgetting: A possibility/necessity approach. OPSEARCH 50 (2013), 149–181.
- [31] PATRO, R., NAYAK, M. M., AND ACHARYA, M. An EOQ model for fuzzy defective rate with allowable proportionate discount. OPSEARCH 56 (2019), 191–215. DOI: 10.1007/s12597-018-00352-1.
- [32] PRAMANIK, P., AND MAITI, M. K. An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC GA approach. Eng. Appl. Artif. Intell. 85, 1 (2019), 194–207. DOI: 10.1016/j.engappai.2019.06.013.
- [33] RAJPUT, N., PANDEY, R. K., SINGH, A. P., AND CHAUHAN, A. An optimization of fuzzy EOQ model in healthcare industries with three different demand pattern using signed distance technique. MESA 10, 2 (2019), 205–218.
- [34] RAJPUT, N., SINGH, A. P., AND PANDEY,R. K. Optimize the cost of a fuzzy inventory model with shortage using signed distance method. Int. J. Res. Advent Tech. 7, 5 (2019), 198–202.
- [35] RANI, S., ALI, R., AND AGARWAL, A. Fuzzy inventory model for deteriorating items in green supply chain with carbon concerned demand. OPSEARCH Springer Oper. Res. Soc. India 56, 1 (2019), 91–112. DOI: 10.1007/s12597019003618.
- [36] RAO, L. A., An EOQ model for deteriorating items with selling price dependent demand and time-varying holding cost under partial backlogging. Int. J. Adv. Eng. Technol. Manage. Appl. Sci. I4, 3 (2015), 148–153.
- [37] ROUT, C., KUMAR, R. S., CHAKRABORTY, D., AND GOSWAMI, A. An EPQ model for deteriorating items with imperfect production, inspection errors, rework and shortages : a type-2 fuzzy approach. OPSEARCH 56, 6 (2019), DOI: 10.1007/s12597-019-00390-3.
- [38] ROY, A. Fuzzy inventory model for deteriorating items with price dependent demand. Int. J. Manage. Sci. Eng. Manage. 10, 4 (2014), 237–241. DOI: 10.1080/17509653.2014.959086.
- [39] SAHOO, A. K., INDRAJITSINGHA, S. K., SAMANTA, P. N., AND MISRA, U. K. Selling price dependent demand with allowable shortages model under partially backlogged deteriorating Items. Int. J. Appl. Math. Comp. Sci. 5, 4 (2019), 1–13. DOI: 10.1007/s40819-019-0670-7.
- [40] SALAS NAVARRO, K., ACEVEDO CHEDID,J., ÁRQUEZ, G. M., FLOREZ, W. F., OSPINA, M, H., SANA, S. S., AND CÁRDENAS-BARRÓN, L. E. An EPQ inventory model considering an imperfect production system with probabilistic demand and collaborative approach. J. Adv. Manage. Res. 17, 2 (2020), 282–304. DOI: 10.1108/JAMR0720190141.
- [41] SHAH, N. H., AND VAGHEL, C. R. An EPQ model for deteriorating items with price dependent demand and two level trade credit financing. Inv. Oper. 39, 2 (2018), 170–180.
- [42] SHEKARIAN, E.,JABER, M. Y., KAZEMI, N., AND EHSANI, E. A fuzzified version of the economic production quantity (EPQ) model with backorders and rework for a single-stage system. Eur. J. Ind. Eng. 8, 3 (2014), 91–324.
- [43] SHEKARIAN, E., KAZEMI, N., RASHID, S. H. A., AND OLUGU, E. U. Fuzzy inventory models: a comprehensive review. Appl. Soft Comp. 55 (2017), 588–621.
- [44] SHEKARIAN, E., OLUGU, E. U., ABDUL-RASHID, S-H., AND KAZEMI, N. An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning. J. Int. Fuzzy Syst. 30, 5 (2016), 2985–2997. DOI: 10.3233/IFS-151907.
- [45] SHEKARIAN, E., OLUGU, E. U., ABDUL-RASHID, S. H., AND KAZEMI, N. Analyzing optimization techniques in inventory models: the case of fuzzy economic order quantity problems. In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management (March 8–10, 2016), Kuala Lumpur, Malaysia, pp. 1229–1240.
- [46] SHEKARIAN, E., OLUGU, E. U., ABDUL-RASHID, S. H., AND BOTTANI,E. A fuzzy reverse logistics inventory system integrating economic order/production quantity models. Int. J. Fuzzy Syst. 18, 6 (2016), 1141–1161. DOI: 10.1007/s40815-015-0129-x.
- [47] TEIXEIRA, R., PAIVA, E. L., MATOS, C. A. D., AND VESEL, P. The joint effect of buyer-supplier interaction and service complexity on B2B buyer satisfaction. Int. J. Serv. Technol. Manage. 26, 6 (2020), 455–477. DOI: 10.1504/ijstm.2020.110368.
- [48] TRIPATHI, R. P., AND KUMAR, M. A. New model for deteriorating items with inflation under permissible delay in payments. Int. J. Ind. Eng. Comp. 5, 3 (2014), 365–374. DOI: 10.5267/j.ijiec.2014.4.006.
- [49] WANG, Y. M., YANG, J. B., XU, D. L., AND CHIN, K. S. On the centroids of fuzzy numbers. Fuzzy Sets Syst. 157, 7 (2006), 919–926. DOI: 10.1016/j.fss.2005.11.006.
- [50] YADAV, D., SINGH, S. R., AND KUMARI, R. Inventory model with learning effect and imprecise market demand under screening error. OPSEARCH 50 (2013), 418–432.
- [51] YADAV, D., SINGH, S. R., KUMARI, R., AND KUMAR, D. Effects of learning on optimal lot size and profit in fuzzy environment. Int. J. Oper. Quant. Manage. 18 (2012), 145–158.
- [52] ZADEH, L. A. Fuzzy sets. Inf. Control 8, 3 (1965), 338–353. DOI: 10.1016/S00199958(65)90241X.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ccbb8c2-4183-4b5e-bf3c-e63a555e6369