PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The participation of oleic acid and its esters in [3+2] cycloaddition reactions: a mini-review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This mini review presents the state of knowledge on the [3+2] cycloaddition reactions involving fatty acids and their esters with triatomic components (TAC). In general, the literature reports are quite sparse and relatively old. The reaction yield was in the range of 12-85%. The best result of 32CA was obtained from the reaction of butylonitrile N-oxide (4) and methyl oleate (2). Other tested TAC as components of title reactions were nitrylimines and ozone.
Czasopismo
Rocznik
Strony
53--61
Opis fizyczny
Bibliogr. 29 poz., 1 il. kolor., rys.
Twórcy
autor
  • Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
Bibliografia
  • [1] Akcan, T.; Gökçe, R.; Asensio, M.; Estévez, M.; Morcuende, D.; Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest. J. Food. Sci. Technol. 2017, 54, 3050-3057. DOI: 10.1007/s13197-017-2740-3.
  • [2] Grela, K.; Czarnocka-Śniadła, S.; Sytniczuk, A.; Milewski, M.; Urban, M.; Banach Ł.; Sposób wytwarzania cyklicznych związków w reakcji metatezy olefin oraz zastosowanie katalizatorów rutenowych do wytwarzania cyklicznych olefin w reakcjach metatezy olefin. 2017, P.421462.
  • [3] Sytniczuk, A.; Kajetanowicz, A.; Grela, K.; Fishing fort heright catalyst for the cross-metathesis reaction of methyl oleate with 2-methyl-2-butene. Catal. Sci. Technol. 2017, 7, 1284-1296. DOI:10.1039/c6cy02623k.
  • [4] Jasiński, R.; Dresler, E.; On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49-69. DOI:10.3390/org1010005.
  • [5] Ríos-Gutiérrez, M.; Domingo, L.R.; Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 2019, 267-282. DOI:10.1002/ejoc.201800916.
  • [6] Kras, J.; Sadowski, M.; Zawadzińska, K.; Nagatsky, R.; Woliński, P.; Kula, K.; Łapczuk, A.; Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Rad. 2023, 2, 247-267, DOI: 10.58332/scirad2023v2i3a03.
  • [7] Martin, V.V.; Volodarskii, L.B.; Voinov, M.A.; et al. 1,3-Dipolar cycloaddition of 3-imidazoline-3-oxide nitroxyl radical to dipolarophiles containing carbon-carbon double bonds. Russ. Chem. Bull. 1988, 37, 1677-1683. DOI:10.1007/BF00961121.
  • [8] Ahmad, A.; Ahmad, A.; Varshney, H.; Rauf, A.; Rehan, M.; Subbarao, N.; Khan, A.U.; Designing and synthesis of novel antimicrobial heterocyclic analogs of fatty acids. Eur. J. Med. Chem. 2013, 70, 887-900. DOI: 10.1016/j.ejmech.2013.10.051.
  • [9] Ahmed, M.A.; Mustafa, J.; Osman, S.M.; 1,3-cycloaddition of nitrile oxide to olefinic fatty acid esters: synthesis of isoxazolines. J. Am. Oil. Chem. Soc. 1991, 68, 886-887. DOI:10.1007/BF02660608.
  • [10] Govindaraju, M.; Kumar, G.V.; Kumar, K.A.; Synthesis and antimicrobial activity of novel isoxazolines by 1, 3-dipolar cycloaddition reactions. Int. J. Chem. Tech. Res . 2014, 6, 886-890.
  • [11] Govindaraju, M.; Kumar, G.V.; Mylarappa, B.N.; Kumar, K.A.; Synthesis of 8-(5-Aryl-4-Octyl-2-Phenyl-3, 4-Dihydro-2H-Pyrazol-3-yl)-Octanoic acid ethyl esters via 1,3-Dipolar Cycloaddition Reaction. IOSR-JAC 2012, 2, 01-04. DOI: 10.9790/5736-0210104.
  • [12] Criegee, R.; Mechanism of Ozonolysis. Angew. Chem. Int. Ed. Engl. 1975, 14, 745-752. DOI:10.1002/anie.197507451.
  • [13] Criegee, R.; The course of ozonization of unsaturated compounds. Record Chem. Progr. 1957, 18, 111-120.
  • [14] Schröder, G.; Ein stereoisomeres Ozonidpaar. Chem. Ber. 1962, 95, 733-737. DOI:10.1002/cber.19620950325.
  • [15] Murray, R.W.; Youssefyeh, R.D.; Story, P.R.; Ozonolysis. Steric and stereochemical effects in the olefin. J. Am. Chem. Soc. 1967, 89, 2429-2434. DOI:10.1021/ja00986a033.
  • [16] Privett, O.S.; Nickell, E.C.; Stereoisomer formation on the ozonization of esters of monounsaturated fatty acids. J. Lip. Res. 1963, 42, 208-211. DOI:10.1016/S0022-2275(20)40349-9.
  • [17] Riezelbos, G.; Grimmelikheizsen, J.C.; Dorp, D.A.; Recueil Des Travaux Chimiques Des Pays-Bas. 1963, 82, 1234.
  • [18] Nickell, E.C.; Albi, M.; Privett, O.S.; Ozonization products of unsaturated fatty acid methyl esters. Chem. Phys. Lip. 1976, 17, 378-388. DOI:10.1016/0009-3084(76)90083-9.
  • [19] Rebrovic, L.; The Peroxidic Species Generated by Ozonolysis of Oleic Acid or Methyl Oleate in a Carboxylic Acid Medium. JAOCS, 1992, 69,159-165. DOI: 10.1007/bf02540568.
  • [20] Nishikawa, N.; Yamada, K.; Matsutani, S.; et al. Structures of ozonolysis products of methyl oleate obtained in a carboxylic acid medium. J. Am. Oil. Chem. Soc. 1995, 72, 735-740. DOI:10.1007/BF02635664.
  • [21] Cataldo, F.; Chemical and thermochemical aspects of the ozonolysis of ethyloleate: Decomposition enthalpy of ethyl oleate ozonide. Chem. Phys. Lip. 2013, 175- 176, 41-49. DOI: 10.1016/j.chemphyslip.2013.07.005.
  • [22] Ledea, O.; Díaz, M.; Molerio, J.; Jardines, D.; Rosado, A.; Correa, T.M.; 1 H-NMR Spectroscopy Study of Oleic Acid and Methyl Oleate Ozonation in different reaction conditions. Rev. CENIC, Cienc. quím. 2003, 34.
  • [23] Gallimore, P.J.; Griffiths, P.T.; Pope, F.D.; Reid, J.P.; Kalberer, M.; Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition. J. Geophys. Res. Atmos. 2017, 122, 4364-4377, DOI:10.1002/2016JD026221.
  • [24] Pfrang, C.; Sebastiani, F.; Lucas, C.O.M.; King, M.D.; Hoare, I.D.; Chang, D.; Campbell, R.A.; Ozonolysis of methyl oleate monolayers at the air-water interface: oxidation kinetics, reaction products and atmospheric implications. Phys. Chem. Chem. Phys. 2014, 16. 13220-13228. DOI:10.1039/c4cp00775a.
  • [25] Pokhodylo, N.T.; Tupychak, M.A.; Shyyka, O.Y.; Obushak, M.D.; Some Aspects of the Azide-Alkyne 1, 3-Dipolar Cycloaddition Reaction. Russian Journal of Organic Chemistry 2019, 55, 1310-1321. DOI: 10.1134/S1070428019090082.
  • [26] Mames, A.; Stecko, S.; Mikołajczyk, P.; Soluch, M.; Furman, B; Chmielewski, M.; Direct, catalytic synthesis of carbapenams via cycloaddition/rearrangement cascade reaction: unexpected acetylenes’ structure effect. J. Org. Chem. 2010, 75, 7580-7587. DOI: 10.1021/jo101355h.
  • [27] Choi, A.; Morley, R.M.; Coldham, I.; Synthesis of pyrrolo [1, 2-a] quinolines by formal 1, 3-dipolar cycloaddition reactions of quinolinium salts. Beilstein J. Org. Chem. 2019, 15, 1480-1484. DOI: 10.3762/bjoc.15.149.
  • [28] Alkayar, Z.T.; Coldham, I.; Cascade cyclization and intramolecular nitrone dipolar cycloaddition and formal synthesis of 19-hydroxyibogamine. Org. Biomol. Chem. 2019, 17, 66-73. DOI: 10.1039/C8OB02839G.
  • [29] Siadati, S.; A.; Rezazadeh, S.; The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Rad. 2022, 1, 46-68. DOI: 10.58332/v22i1a04.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc9aa63-2af3-4c1b-af31-2dd26aa274c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.