PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents numerical and experimental investigations to identify reinforcing bars using the ground penetrating radar (GPR) method. A novel element of the paper is the inspection of different arrangements of reinforcement bars. Two particular problems, i.e. detection of few adjacent transverse bars and detection of a longitudinal bar located over or under transverse reinforcement, have been raised. An attention was also paid to the influence of few adjacent bars on the estimation of wave velocity in concrete based on the diffraction hyperbola. The GPR simulations were undertaken using the finite-difference time-domain (FDTD) method. The new approach for the numerical modelling of GPR in complex reinforced concrete structures with the use of a 3-D FDTD model was presented. Simulated scans for the 3-D model were compared with results of in situ surveys. The results of investigations showed high usefulness of the 3-D model for the GPR field propagation in structures with a complex system of the reinforcement.
Rocznik
Strony
1228--1240
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] J. Hoła, K. Schabowicz, State-of-the-art non-destructive methods for diagnostic testing of building structures–anticipated development trends, Arch. Civ. Mech. Eng. 10 (2010) 5–18. , http://dx.doi.org/10.1016/S1644-9665(12)60133-2.
  • [2] P. Gaydecki, L. Heathcote, A methodology to extract dimensional information from steel bars using a magnetic field imaging camera (mFIC), Meas. Sci. Technol. 21 (2010) 1–10. , http://dx.doi.org/10.1088/0957-0233/21/7/075501.
  • [3] G.F. Pla-Rucki, M.O. Eberhard, Imaging of reinforced concrete: state-of-the-art review, J. Infrastruct. Syst. 1 (1995) 134–141, doi:10.1061/(ASCE)1076-0342(1995)1:2(134).
  • [4] A.M. Alani, M. Aboutalebi, G. Kilic, Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment, J. Appl. Geophys. 97 (2013) 45–54. , http://dx.doi.org/10.1016/j.jappgeo.2013.04.009.
  • [5] D. Bęben, A. Mordak, W. Anigacz, Ground penetrating radar application to testing of reinforced concrete beams, Proc. Eng. 65 (2013) 242–247. , http://dx.doi.org/10.1016/j.proeng.2013.09.037.
  • [6] L. Xiang, H.-L. Zhou, Z. Shu, S.-H. Tan, G.-Q. Liang, J. Zhu, GPR evaluation of the Damaoshan highway tunnel: a case study, NDT E Int. 59 (2013) 68–76. , http://dx.doi.org/10.1016/j.ndteint.2013.05.004.
  • [7] J. Stryk, R. Matula, K. Pospisil, Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements, J. Appl. Geophys. 97 (2013) 11–26. , http://dx.doi.org/10.1016/j.jappgeo.2013.06.013.
  • [8] J. Hugenschmidt, A. Kalogeropoulos, F. Soldovieri, G. Prisco, Processing strategies for high-resolution GPR concrete inspections, NDT E Int. 43 (2010) 334–342. , http://dx.doi.org/10.1016/j.ndteint.2010.02.002.
  • [9] R. González-Drigo, V. Pérez-Gracia, D. Di Capua, L.G. Pujades, GPR survey applied to Modernista buildings in Barcelona: the cultural heritage of the College of Industrial Engineering, J. Cult. Herit. 9 (2008) 196–202. , http://dx.doi.org/10.1016/j.culher.2007.10.006.
  • [10] D.J. Clem, T. Schumacher, J.P. Deshon, A consistent approach for processing and interpretation of data from concrete bridge members collected with a hand-held GPR device, Constr. Build. Mater. 86 (2015) 140–148. , http://dx.doi.org/10.1016/j.conbuildmat.2015.03.105.
  • [11] L. Zanzi, D. Arosio, Sensitivity and accuracy in rebar diameter measurements from dual-polarized GPR data, Constr. Build. Mater. 48 (2013) 1293–1301. , http://dx.doi.org/10.1016/j.conbuildmat.2013.05.009.
  • [12] V. Pérez-Gracia, R. González-Drigo, D. Di Capua, Horizontal resolution in a non-destructive shallow GPR survey: an experimental evaluation, NDT E Int. 41 (2008) 611–620. , http://dx.doi.org/10.1016/j.ndteint.2008.06.002.
  • [13] S. Yehia, N. Qaddoumi, S. Farrag, L. Hamzeh, Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR, NDT E Int. 65 (2014) 35–46. , http://dx.doi.org/10.1016/j.ndteint.2014.03.006.
  • [14] M. Rucka, J. Lachowicz, M. Zielińska, GPR investigation of the strengthening system of a historic masonry tower, J. Appl. Geophys. 131 (2016) 94–102. , http://dx.doi.org/10.1016/j.jappgeo.2016.05.014.
  • [15] M. Solla, H. Lorenzo, F.I. Rial, A. Novo, Ground-penetrating radar for the structural evaluation of masonry bridges: results and interpretational tools, Constr. Build. Mater. 29 (2012) 458–465. , http://dx.doi.org/10.1016/j.conbuildmat.2011.10.001.
  • [16] M. Solla, H. González-Jorge, M.X. Álvarez, P. Arias, Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall, Constr. Build. Mater. 36 (2012) 14–19. , http://dx.doi.org/10.1016/j.conbuildmat.2012.04.134.
  • [17] X. Xie, H. Qin, C. Yu, L. Liu, An automatic recognition algorithm for GPR images of RC structure voids, J. Appl. Geophys. 99 (2013) 125–134. , http://dx.doi.org/10.1016/j.jappgeo.2013.02.016.
  • [18] J. Li, Z. Zeng, L. Huang, F. Liu, GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD, Comput. Geosci. 49 (2012) 121–130. , http://dx.doi.org/10.1016/j.cageo.2012.06.020.
  • [19] I. Giannakis, A. Giannopoulos, C. Warren, A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 9 (2015) 1–15. , http://dx.doi.org/10.1109/JSTARS.2015.2468597.
  • [20] N. Diamanti, A. Giannopoulos, M.C. Forde, Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges, NDT E Int. 41 (2008) 354–363. , http://dx.doi.org/10.1016/j.ndteint.2008.01.006.
  • [21] J. Lachowicz, M. Rucka, Numerical modeling of GPR field In damage detection of a reinforced concrete footbridge, Diagnostyka 17 (2016) 3–8.
  • [22] J. Lachowicz, M. Rucka, Experimental and numerical investigations for GPR evaluation of reinforced concrete footbridge, in: 16th Int. Conf. Gr. Penetrationg Radar, Hong Kong, (2016) 1–6. , http://dx.doi.org/10.1109/ICGPR.2016. 7572675.
  • [23] L. Mertens, R. Persico, L. Matera, S. Lambot, Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium, IEEE Trans. Geosci. Rem. Sens. 54 (2016) 580–596. , http://dx.doi.org/10.1109/TGRS.2015.2462727.
  • [24] F. Sagnard, J.-P. Tarel, Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities, J. Geophys. Eng. 13 (2016) 491–504. , http://dx.doi.org/10.1088/1742-2132/13/4/491.
  • [25] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441.
  • [26] A. Giannopoulos, Modelling ground penetrating radar by GprMax, Constr. Build. Mater. 19 (2005) 755–762. , http://dx.doi.org/10.1016/j.conbuildmat.2005.06.007.
  • [27] C. Warren, A. Giannopoulos, I. Giannakis, gprMax: open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar, Comput. Phys. Commun. 209 (2016) 163–170. , http://dx.doi.org/10.1016/j.cpc.2016.08.020.
  • [28] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14 (1966) 302–307. , http://dx.doi.org/10.1109/TAP.1966.1138693.
  • [29] J.F.C. Sham, W.W.L. Lai, Development of a new algorithm for accurate estimation of GPR's wave propagation velocity by common-offset survey method, NDT E Int. 83 (2016) 104–113. , http://dx.doi.org/10.1016/j.ndteint.2016.05.002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc8d28d-c772-4137-ae4e-b1dff5a0ba7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.