PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using Mathematica software for coal gasification simulations – Selected kinetic model application

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal gasification is recognized as a one of promising Clean Coal Technologies. As the process itself is complicated and technologically demanding, it is subject of many research. In the paper a problem of using volumetric, non-reactive core and Johnson model for coal gasification and underground coal gasification is considered. The usage of Mathematica software for models' equations solving and analysis is presented. Coal parameters were estimated for five Polish mines: Piast, Ziemowit, Janina, Szczygłowice and Bobrek. For each coal the models' parameters were determined. The determination of parameters was based on reactivity assessment for 50% char conversion. The calculations show relatively small differences between conversion predicted by volumetric and non reactive core model. More significant differences were observed for Johnson model, but they do not exceeded 10% for final char conversion. The conceptual model for underground coal gasification was presented.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Post-Industrial Sites and Waste Management, Central Mining Institute, Katowice, Poland
Bibliografia
  • 1.Bhutto, A. W., Bazmi, A. A., & Zahedi, G. (2013). Underground coal gasification: from fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189e214.
  • 2.Białecka, B. (2008). Podziemne zgazowanie węgla. Podstawy Procesu Decyzyjnego. Katowice: Główny Instytut Górnictwa.
  • 3.Biezen, E., Bruining, J., & Molenaar, J. (1995). An integrated 3D model for underground coal gasification. In Presented at the society of petroleum engineers. Annual technical conference (pp. 929e940).
  • 4.Chramcov, B. (2011). Utilization of Mathematica environment for designing the forecast model of heat demand. Neural Networks, 8(21), 22.
  • 5.Couch, G. R. (2009). Underground coal gasification. IEA Clean Coal Centre.
  • 6.Khadse, A. N., Qayyumi, M., Mahajani, S. M., & Aghalayam, P. (2006). Reactor model for the underground coal gasification (UCG) channel. International Journal of Chemical Reactor Engineering, 4(1).
  • 7.Molina, A., & Mondrag on, F. (1998). Reactivity of coal gasification with steam and CO2. Fuel, 77(15), 1831e1839. http://dx.doi.org/10.1016/S0016-2361(98)00123-9.
  • 8.Mykhalchuk, M., & Fedasyuk, D. (2001). Solving heat conduction problems in Mathematica environment. In Presented at the CAD systems in microelectronics, 2001. CADSM 2001. Proceedings of the 6th International conference. The experience of designing and application of, IEEE (pp. 164e165).
  • 9.Nurzyńska, K., Iwaszenko, S., & Choroba, T. (2014). Database application in visualization of process data. In Beyond databases, architectures, and structures (pp. 537e546). Springer.
  • 10.Nurzyńska, K., Janoszek, T., & Iwaszenko, S. (2014). Modeling test of cavity growth during underground coal gasification process using CFD method. In Proceedings of 2014 International conference on information science, electronics and electrical engineering. Sapporo: Hokkaido, Japan.
  • 11.Ram, L. C., & Masto, R. E. (2010). An appraisal of the potential use of fly ash for reclaiming coal mine spoil. Journal of Environmental Management, 91(3), 603e617.
  • 12.Sarafian, H. (2011). Trajectory of a baseball and its characters under the influence of a drag force and the magnus effect. In Presented at the computational science and its applications (ICCSA), 2011 International conference on, IEEE (pp. 51e59).
  • 13.Sarraf Shirazi, A., Mmbaga, J., & Gupta, R. (2011). Modeling cavity growth during underground coal gasification. In Proceedings of the 2011 COMSOL conference (pp. 1e5) (Boston, USA).
  • 14.Seifi, M., Chen, Z., & Abedi, J. (2011). Numerical simulation of underground coal gasification using the CRIP method. The Canadian Journal of Chemical Engineering, 89(6), 1528e1535.
  • 15.Shafirovich, E., & Varma, A. (2009). Underground coal gasification: a brief review of current status. Industrial & Engineering Chemistry Research, 48(17), 7865e7875.
  • 16.Smoliński, A. (2011). Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management, 52(1), 37e45.
  • 17.Urych, B. (2014). Determination of kinetic parameters of coal pyrolysis to simulate the process of underground coal gasification (UCG). Journal of Sustainable Mining, 13(1), 3e9.
  • 18.Wachowicz, J., Janoszek, T., & Iwaszenko, S. (2010). Model tests of the coal gasification process. Archives of Mining Sciences, 55, 249e262.
  • 19.Wachowicz, J., Łączny, M., Iwaszenko, S., Janoszek, T., & Cempa- Balewicz, M. (2013). Zastosowanie pakietu FLUENT do symulacji procesu podziemnego zgazowania węgla-koncepcja metody. Przegląd Górniczy, 69.
  • 20.Wiatowski, M., Stańczyk, K.,Świądrowski, J., Kapusta, K., Cybulski, K., Krause, E., et al. (2012). Semi-technical underground coal gasification (UCG) using the shaft method in experimental mine “Barbara.” Fuel, 99, 170e179.
  • 21.Żogała, A. (2014a). Critical analysis of underground coal gasification models. Part II: equilibrium models-literary studies. Journal of Sustainable Mining, 13(1), 22e28.
  • 22.Żogała, A. (2014b). Critical analysis of underground coal gasification models. Part II: kinetic and computational fluid dynamics models. Journal of Sustainable Mining, 13(1), 29e37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc8b50d-e043-4605-9d7f-864d0aa1ec6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.