PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Different Reclamation Modes of Fly Ash Deposits on Species Richness of Spontaneous Flora

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model reclamation process of the studied fly ash deposits has been started in 2003 by formation of five different experimental surface layers containing fly ash and organic matter in various combinations. Then, grass mixture was sown on these surface layers. In 2015, selected properties of plant communities growing on different variants of surface layers applied in the reclamation process were assessed. It was assumed that the type of mineral and organic substrates used in the process and their quality were the main factors affecting the long term plant diversity present on different variants of restored surfaces. The aim of this analysis was the assessment of the effectiveness of ash waste reclamation (carried out on five different types of the surface layer) after 12 years since its initiation. The long term results of the reclamation process showed that the applied surface layers allowed for an effective reclamation of ashes since all variants of experimental surfaces were totally covered by dense vegetation. The predominance of plant species from ruderal and segetal habitats indicated that the soil of the experimental habitats was fertile with neutral and slightly alkaline pH, and texture of sandy loams. The experimental surface layers with a texture of sand of favourable C:N ratio, neutral or slightly alkaline did not limit the plant development. The use of organic waste markedly contributed to the floristic diversity of the spontaneously developed vegetation. Coniferous bark used in some experimental variants had a marked effect on their floristic distinctiveness due to the presence of species preferring habitats of lower pH values.
Rocznik
Strony
271--285
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
  • Department of Ecology, Environmental Protection and Management, West Pomeranian University of Technology, Szczecin, Poland
  • Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology, Szczecin, Poland
  • Department of Botany and Nature Protection, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
  • University of Szczecin, Institute of Marine and Environmental Sciences, Wąska 13, 71-412 Szczecin, Poland
  • Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology, Szczecin, Poland
  • Department of Agronomy, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, Szczecin, Poland
Bibliografia
  • 1. Abreu-Junior C. H., Firme L. P., Maldonado C. A. B., de Moraes-Neto S. P., Alves M. C., Muraoka T., Boaretto A. E., Gava J. L., He Z., Nogueira T. A. R., Capra G. F. 2017 – Fertilization using sewage sludge in unfertile tropical soils increased wood production in Eucalyptus plantations – J. Environ. Manage. 203: 51-58.
  • 2. Adachi N., Terashima I., Takahashi M. 1996 – Central dieback of monoclonal stands of Reynoutria japonica in an early stage of primary succession on Mount Fuji – Ann. Bot. 77: 477-486.
  • 3. Adamczuk A., Kołodyńska D. 2017 – Utilization of fly ashes from the coal burning processes to produce effective low-cost sorbents – Energy Fuels, 31: 2095-2105.
  • 4. Ahmaruzzaman A. 2010 – Review of the utilization of fly ash – Prog. Energy Sci. 36: 327-363.
  • 5. Altland J. E., Jeong K. Y. 2016 – Dolomitic lime amendment affects pine bark substrate pH, nutrient availability, and plant growth: a review – HortTechnology, 26: 565-573.
  • 6. Antonkiewicz J. 2014 – Effect of fly ashes and sewage sludge on Fe, Mn, Al, Si and Co uptake by grass mixture – J. Ecol. Eng. 15: 6-13.
  • 7. Argiz C., Menéndez E., Moragues A., Sanjuán M. A. 2015 – Fly ash characteristics of Spanish coal-fired power plants – Afinidad, 72: 269-277.
  • 8. Argiz C., Sanjuán M. A., Menéndez E. 2017 – Coal bottom ash for portland cement production – Adv. Mater. Scein. Eng. ID article 6068286, 7 pp.
  • 9. Błońska A., Kompała-Bąba A., Sierka E., Bierza W., Magurno F., Besenyei L., Ryś K., Woźniak G. 2019 – Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas – J. Ecol. Eng. 20: 209-217.
  • 10. Braun-Blanquet J. 1964 – Pflanzensoziologie, Grundzüge der Vegetationskunde. 3. Aufl. – Springer, Wien-New York, 865 pp.
  • 11. Chen F., Yang Y., Mi J., Liu R., Hou H., Zhang S. 2019 – Effects of vegetation pattern and spontaneous succession on remediation of potential toxic metal-polluted soil in mine dumps – Sustainability, 11: 397.
  • 12. Chindyaeva L. N., Belanova A. P., Kiseleva T. I. 2018 – Patterns of natural regeneration of alien species of woody plants in Novosibirsk – Rus. J. Biol. Invas. 2: 90-107.
  • 13. Chmiel J. 1993 – [Flora of vascular plants of the eastern part of Gniezno Lake District and its anthropogenic transformations in the 19th and 20th centuries (Part 1, 2)] – Sorus, Poznań, 202 pp. (Part 1), 212 pp. (Part 2) (in Polish).
  • 14. Ciećko Z., Żołnowski A. C., Madej M., Wasiak G., Lisowski J. 2015a – Long-term effects of hard coal fly ash on selected soil properties – Pol. J. Environ. Stud. 24: 1949-1957.
  • 15. Ciećko Z., Żołnowski C., Madej M., Wasiak G., Lisowski J., Rolka E. 2015b – The long-term impact of ameliorating doses of hard coal fly ash on shaping the content of selected microelements in agricultural soil – Pol. J. Soil Sci. XLVIII/1: 1-12.
  • 16. Denisow B., Wrzesień M., Mamchur Z., Chuba M. 2017 – Invasive flora within urban railway areas: a case study from Lublin (Poland) and Lviv (Ukraine) – Acta Agrobot. 70: 17-27.
  • 17. Dietterich L. H., Casper B. B. 2017 – Initial soil amendments still affect plant community composition after nine years in succession on a heavy metal contaminated mountainside – Restor. Ecol. 25: 201-210.
  • 18. Dmitrakova Y. A., Abakumov E. V. 2018 – Restoration of soils and vegetation on reclamation sites of the kingisepp phosphorite field – Eurasian Soil Sci. 51: 588-597.
  • 19. Dyguś K. H. 2015 – The role of plants in experimental biological reclamation in a bed of furnace waste from coal-based energy – J. Ecol. Engin. 16: 8-22.
  • 20. Gamrat R., Tomaszewicz T., Chudecka J., Stankowski S., Wróbel M., Nowak G. 2018a – Plant communities in the lysimeter experiment of ash reclamation in the Dolna Odra Power Station in Nowy Czarnów – Pol. J. Soil Sci. 7: 271-282.
  • 21. Gamrat R., Tomaszewicz T., Hury G., Wysocka G. 2018b – Study on the content of heavy metals in plants which occupy active ash settling ponds of the Dolna Odra Power Plant – J. Elem. 23: 217-229.
  • 22. Isermann M. 2008 – Expansion of Rosa rugosa and Hippophaë rhamnoides in coastal grey dunes: effects at different spatial scales – Flora, 203: 273-280.
  • 23. Jasionkowski R., Wojciechowska A., Kamiński D., Piernik A. 2016 – Meadow species in the early stages of succession on the ash settler of power plant EDF Toruń SA in Toruń, Poland – Ecol. Quest. 23: 79-86.
  • 24. Kobierski M., Kondratowicz-Maciejewska K., Kociniewska K. 2015 – Soil quality assessment of Phaeozems and Luvisols from the Kujawy region (central Poland) – Soil Sci. Ann. 66: 111-118.
  • 25. Kollmann J., Frederiksen L., Vestergaard P., Bruun H. H. 2007 – Limiting factors for seedling emergence and establishment of the invasive non-native Rosa rugosa in a coastal dune system – Biol. Invas. 9: 31-42.
  • 26. Kompała A., Błońska A., Woźniak G. 2004 – Vegetation of the ‘Żabie Doły’ area (By-tom) covering the wastelands of zinclead – Arch. Environ. Prot. 30: 59-76.
  • 27. Kovach W. L. 1985-1999 – MVSP Plus version 3.1 – Pentraeth, UK.
  • 28. Krzywy E., Stankowski S., Krzywy-Gawrońska E. 2008 – [Content of general and soluble forms in 1 M HCL of cadmium, copper, nickel, lead and zinc in surface layers of reclamation models] – Adv. Agri. Sci. Prob. Iss. 533: 231-238 (in Polish).
  • 29. Krzyżak J., Wasilkowski D., Płaza G. A., Mrozik A., Brigmon R. L., Pogrzeba M. 2013 – Culture methods as indicators of the biological quality of phytostabilized heavy metal-contaminated soil – Environ. Biotech. 9: 6-13.
  • 30. Kucharski R., Sas-Nowosielska A., Małkowski E., Japenga J., Kuperberg J. M., Pogrzeba M., Krzyżak J. 2005 – The use of indigenous plant species and calcium phosphate for the stabilization of highly metal polluted sites in southern Poland – Plant Soil, 273: 291-305.
  • 31. Kwiatkowska-Malina J. 2015 – The comparison of the structure of humic acids from soil amended with different sources of organic matter – Pol. J. Soil Scien. 48: 57-64.
  • 32. Labidi S., Firmin S., Verdin A., Bidar G., Laruelle F., Douay F., Shirali P., Fontaine J., Lounès-Hadj Sahraoui A. 2017 – Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: a long-term field experiment – Ecotoxicol. Environ. Saf. 138: 190-198.
  • 33. Lech M., Fronczyk J., Radziemska M., Sieczka A., Garbulewski K., Koda E., Lechowicz Z. 2016 – Monitoring of TDS on agricultural land using electrical conductivity measurements – Applied Ecol. Environ. Research. 14: 285-295.
  • 34. Martínez-Ruiz C., Fernández-Santos B., Gómez-Gutiérrez J. M. 2001 – Effects of substrate coarseness and exposure on plant succession in uranium-mining wastes – Plant Ecol. 155: 79-89.
  • 35. Masu S., Rus V. 2013 – Studies regarding the establishment of perennial plant communities stimulated with biosolids on fly ash dumps – J. Environ. Protec. Ecol. 14: 204-208.
  • 36. Matuszkiewicz W. 2017 – [Guide to identifying plant communities (3nd edition)] – PWN, Warszawa, 540 pp. (in Polish).
  • 37. Maurel N., Salmon S., Ponge JF., Machon N., Moret J., Muratet A. 2010 – Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands? – Biol. Invas. 12: 1709-1719.
  • 38. Mitrović M., Pavlović P., Lakusić D., Djurdjević L., Stevanović B., Kostić O., Gajić G. 2008 – The potential of Festuca rubra and Calamagrostis epigejos for the revegetation of fly ash deposits – Sci. Total Environ. 407: 338-347.
  • 39. Moore A., Hines S., Brown B., Falen C., Marti M. H., Chahine M., Norell R., Ippolito J., Parkinson S., Satterwhite M. 2014 – Soil-plant nutrient interactions on manure-enriched calcareous soils – Agron. J. 106: 73-80.
  • 40. Osman K. T. 2013 – Plant nutrients and soil fertility management (In: Soils: principles, properties and management, Ed: K. T. Osman) – Springer, Dordrecht, pp 129-159.
  • 41. Pandey V. Ch. 2015 – Assisted phytoremediation of fly ash dumps through naturally colonized plants – Ecol. Eng. 82: 1-5.
  • 42. Pandey V. Ch., Prakash P., Bajpai O., Kumar A., Singh N. 2015 – Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration – Environ. Sci. Pollut. Res. 22: 2776-2787.
  • 43. Pandey V. Ch., Bajpaib O., Singh N. 2016 – Plant regeneration potential in fly ash ecosystem – Urb. For. Urban Green. 15: 40-44.
  • 44. Park J. Y. 2014 – Assessing determinants of industrial waste reuse: the case of coal ash in the United States – Resour. Conserv. Recyc. 92: 116-127.
  • 45. Piernik A. 2008 – [Numerical methods in ecology on the example of applications of the MVSP package for vegetation analysis] – Wyd. Nauk. UMK, Toruń, 92 pp. (in Polish, English abstract).
  • 46. Pogrzeba M., Galimska-Stypa R., Krzyżak J., Sas-Nowosielska A. 2015 – Sewage sludge and fly ash mixture as an alternative for decontaminating lead and zinc ore regions – Environ. Monit. Assess. 187: 4120-4129.
  • 47. Pyšek A., Pyšek P., Jarošík V., Hájek M., Wild J. 2003 – Diversity of native and alien plant species on rubbish dumps: effects of dump age, environmental factors and toxicity – Divers. Distribut. 9: 177-189.
  • 48. Pyšek P., Danihelka J., Sádlo J., Chrtek J. Jr., Chytrý M., Jarošík V., Kaplan Z., Krahulec F., Moravcová L., Pergl J., Štajerová K., Tichý L. 2012 – Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns – Preslia, 84: 155-255.
  • 49. RME 2016 – [Regulation of the Minister of the Environment dated 1 September 2016 on assessment procedures for the land surface pollution] – Dz.U. 05.09.2016 r., poz. 1395, 86 pp. (in Polish).
  • 50. Rukzon S., Chindaprasirt P. 2009 – Use of disposed waste ash from landfills to replace Portland cement – Waste Manage. Res. 27: 588-594.
  • 51. Rutkowski L. 2018 – [Vascular plants of Polish Lowland] – PWN, Warszawa, 816 pp. (in Polish).
  • 52. Shaheen S. M., Hooda P. S., Tsadilas C. D. 2014 – Opportunities and challenges in the use of coal fly ash for soil improvements. A review – J. Environ. Manag. 145: 249-267.
  • 53. Singh M., Siddique R. 2013 – Effect of coal bottom ash as partial replacement of sand on properties of concrete – Res. Con. Rec. 72: 20-32.
  • 54. Soil Science Society of Poland. 2011 – [Systematics of Polish Soils] (5-th edition) – Soil Sci. Ann. 62 3, 193 pp. (in Polish, English abstract).
  • 55. Soil Texture Calculator NRCS Soils – USDA 2019 – https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soilssurvey/?cid=nrcs142p2_054167.
  • 56. Stanisz A. 2007 – [An affordable statistics course] – StatSoft Polska, Kraków, 500 pp. (in Polish).
  • 57. Świtoniak M., Kabała C., Charzyński P. 2016 – Proposal of English equivalents for the soil taxa names in the Polish Soils Classification – Soil Sci. An. 67: 103-116.
  • 58. Szymura M., Szymura T. H. 2016 – Historical contingency and spatial processes rather than ecological niche differentiation explain the distribution of invasive goldenrods (Solidago and Euthamia) – Plant Ecol. 217: 565-582.
  • 59. Tejasvi A., Kumar S. 2012 – Impact of fly ash on soil properties – Natl. Acad. Sci. Lett. 35: 13-16.
  • 60. Tsadilas C. D., Hu Z., Bi Y., Nikoli T. 2018 – Utilization of coal fly ash and municipal sewage sludge in agriculture and for reconstruction of soils in disturbed lands: results of case studies from Greece and China – Inter. J. Coal Scie. Technol. 5: 64-69.
  • 61. Ukwattage N. L., Ranjith P. G., Bouazza M. 2013 – The use of coal combustion fly ash as a soil amendment in agricultural lands with comments on its potential to improve food security and sequester carbon – Fuel, 109: 400-408.
  • 62. Urbanová J., Kovář P., Dostál P. 2017 – What processes shape early successional vegetation in fly ash and mine tailings? – Plant Ecol. 218: 127-137.
  • 63. Weber J., Strączyńska S., Kocowicz A., Gilewska M., Bogacz A., Gwiżdż M., Dębicka M. 2015 – Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation – Catena, 133: 250-254.
  • 64. Wiles C. C. 1996 – Municipal solid waste combustion ash: state of the knowledge – J. Haz. Mat. 47: 325-344.
  • 65. Winkler Ł., Stojanowska A., Rybak J. 2019 – Analysis of the vegetation in the terrain of closed industrial waste dump in Siechnice (Lower Silesia) – J. Ecol. 20: 242-248.
  • 66. Woch M. W., Radwańska M., Stefanowicz A. M. 2013 – Flora of spoil heaps after hard coal mining in Trzebinia (southern Poland): effect of substratum properties – Acta Bot. Croat. 72: 237-256.
  • 67. Woch M. W., Radwańska M., Stanek M., Łopata B., Stefanowicz A. M. 2018 – Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites – Sci. Total Environ. 642: 264-275.
  • 68. Woźniak G. 2010 – Diversity of vegetation on coal-mine heaps of the upper Silesia (Poland) – PAN, Kraków, 320 pp.
  • 69. Wyszkowski M., Chełstowski A., Ciećko Z., Szostek R. 2014 – Long-time effect of hard coal ash on the content of some elements in soil – J. Ecol. Eng. 15: 55-60.
  • 70. Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U. 2002 – Ecological indicator values of vascular plants of Poland – PAN, Kraków, 183 pp.
  • 71. Zhang S., Iserman M., Gan W., Breed M. 2018 – Invasive Rosa rugosa populations outperform native populations, but some populations have greater invasive potential than others – Scientific Reports, 5735: 1-8.
  • 72. Żołnierz L., Weber J., Gilewska M., Strączyńska M., Pruchniewicz D. 2016 – The spontaneous development of understory vegetation on reclaimed and afforested post-mine excavation filled with fly ash – Catena, 136: 84-90.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc800b0-3b38-4c57-beac-17a33b8c49be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.