PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel phase-intensive local pattern for periocular recognition under visible spectrum

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article proposes a novel multi-scale local feature based on the periocular recognition technique which is capable of extracting high-dimensional subtle features existent in the iris region as well as low-dimensional gross features in the periphery skin region of the iris. A set of filter banks of different scales is employed to exploit the phase-intensive patterns in visible spectrum periocular image of a subject captured from a distance in partial non-cooperative scenario. The proposed technique is verified with experiments on near-infrared illumination databases like BATH and CASIA-IrisV3-Lamp. Experiments have been further extended to images from visible spectrum ocular databases like UBIRISv2 and low-resolution eye regions extracted from FERETv4 face database to establish that the proposed feature performs comparably better than existing local features. To find the robustness of the proposed approach, the low resolution visible spectrum images of mentioned databases are converted to grayscale images. The proposed approach yields unique patterns from these grayscale images. The ability to find coarse-to-fine features in multi-scale and different phases is accountable for the improved robustness of the proposed approach.
Twórcy
autor
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008, India
autor
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008, India
autor
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008, India
Bibliografia
  • [1] BATH University Database. http://www.bath.ac.uk/elec-eng/research/sipg/irisweb.
  • [2] CASIA Database. http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp.
  • [3] Abhyankar A, Schuckers S. A novel biorthogonal wavelet network system for off-angle iris recognition. Pattern Recogn 2010;43(3):987–1007. http://dx.doi.org/10.1016/j.patcog.2009.08.008.
  • [4] Adams J, Woodard D, Dozier G, Miller P, Bryant K, Glenn G. Genetic-based type II feature extraction for periocular biometric recognition: less is more. 20th International Conf Pattern Recognition (ICPR). 2010. pp. 205–8. http://dx.doi.org/10.1109/ICPR.2010.59.
  • [5] Bakshi S, Sa PK, Majhi B. Optimized periocular template selection for human recognition. BioMed Res Int 2013;2013:1–14. http://dx.doi.org/10.1155/2013/481431.
  • [6] Bay H, Ess A, Tuytelaars T, Gool L. Speeded-up robust features (SURF). Comput Vis Image Understand 2008;110 (3):346–59. http://dx.doi.org/10.1016/j.cviu.2007.09.014.
  • [7] Boles W, Boashash B. A human identification technique using images of the iris and wavelet transform. IEEE Trans Signal Process 1998;46(4):1185–8. http://dx.doi.org/10.1109/78.668573.
  • [8] Chou C, Shih SW, Chen WS, Cheng V, Chen DY. Non-orthogonal view iris recognition system. IEEE Trans Circuits Syst Video Technol 2010;20(3):417–30. http://dx.doi.org/10.1109/TCSVT.2009.2035849.
  • [9] Daugman J. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 1993;15(11):1148–61. http://dx.doi.org/10.1109/34.244676.
  • [10] Daugman J. How iris recognition works. IEEE Trans Circuits Syst Video Technol 2004;14(1):21–30. http://dx.doi.org/10.1109/TCSVT.2003.818350.
  • [11] Dong W, Sun Z, Tan T. Iris matching based on personalized weight map. IEEE Trans Pattern Anal Mach Intell 2011; 33(9):1744–57. http://dx.doi.org/10.1109/TPAMI.2010.227.
  • [12] Hollingsworth K, Bowyer K, Flynn P. Identifying useful features for recognition in near-infrared periocular images. 4th IEEE Int Conf Biometrics: Theory, Applications and Systems (BTAS); 2010. http://dx.doi.org/10.1109/BTAS.2010.5634529.
  • [13] Hollingsworth K, Darnell S, Miller P, Woodard D, Bowyer K, Flynn P. Human and machine performance on periocular biometrics under near-infrared light and visible light. IEEE Trans Inf Forensics Secur 2010;7:588–601. http://dx.doi.org/10.1109/TIFS.2011.2173932.
  • [14] Huang J, You X, Yuan Y, Yang F, Lin L. Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet. Neurocomputing 2010; 73(4–6):883–94. http://dx.doi.org/10.1016/j.neucom.2009.09.016.
  • [15] Jain A, Flynn P, Ross A. Handbook of biometrics. Secaucus, NJ, USA: Springer-Verlag New York, Inc.; 2008, ISBN: 978-0-387-71040-2.
  • [16] Lim S, Lee K, Byeon O, Kim T. Efficient iris recognition through improvement of feature vector and classifier. ETRI J 2001;23(2):61–70. http://dx.doi.org/10.4218/etrij.01.0101.0203.
  • [17] Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004;60(2):91–110. http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.
  • [18] Ma L, Tan T, Wang Y, Zhang D. Personal identification based on iris texture analysis. IEEE Trans Pattern Anal Mach Intell 2003;25(12):1519–33. http://dx.doi.org/10.1109/TPAMI.2003.1251145.
  • [19] Ma L, Tan T, Wang Y, Zhang D. Efficient iris recognition by characterizing key local variations. IEEE Trans Image Process 2004;13(6):739–50. http://dx.doi.org/10.1109/TIP.2004.827237.
  • [20] Miller P, Lyle J, Pundlik S, Woodard D. Performance evaluation of local appearance based periocular recognition. 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS); 2010. http://dx.doi.org/10.1109/BTAS.2010.5634536.
  • [21] Miller P, Rawls A, Pundlik S. Personal identification using periocular skin texture. Proceedings of the 2010 ACM Symposium on Applied Computing (SAC'10); 2010. pp. 1496–500. http://dx.doi.org/10.1145/1774088.1774408.
  • [22] Monro D, Rakshit S, Zhang D. DCT-based iris recognition. IEEE Trans Pattern Anal Mach Intell 2007;29(4):586–95. http://dx.doi.org/10.1109/TPAMI.2007.1002.
  • [23] Nabti M, Bouridane A. An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recogn 2008;41(3):868–79. http://dx.doi.org/10.1016/j.patcog.2007.06.030.
  • [24] Phillips J, Moon H, Rizvi S, Rauss P. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 2000;22(10):1090–104. http://dx.doi.org/10.1109/34.879790.
  • [25] Proença H, Alexandre L. UBIRIS: a noisy iris image database. 13th International Conference on Image Analysis and Processing (ICIAP 2005) Cagliari Lecture Notes in Computer Science, vol. 3617. 2005; pp. 970–7. http://dx.doi.org/10.1007/11553595_119.
  • [26] Proenca H, Alexandre L. Toward non-cooperative iris recognition: a classification approach using multiple signatures. IEEE Trans Pattern Anal Mach Intell 2007; 29(4):607–12. http://dx.doi.org/10.1109/TPAMI.2007.1016.
  • [27] Proenca H, Filipe S, Santos R, Oliveira J, Alexandre L. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell 2010;32(8):1529–35. http://dx.doi.org/10.1109/TPAMI.2009.66.
  • [28] Raffei A, Asmuni H, Hassan R, Othman R. Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local Radon transform. Pattern Recogn 2013;46:2622–33. http://dx.doi.org/10.1016/j.patcog.2013.03.009.
  • [29] Rahulkar A, Waghmare L, Holambe R. A new approach to the design of hybrid finer directional wavelet filter bank for iris feature extraction and classification using k-out-of-n: a post-classifier. Pattern Anal Appl 2013;2013:1–19. http://dx.doi.org/10.1007/s10044-013-0334-x.
  • [30] Sun Z, Tan T. Ordinal measures for iris recognition. IEEE Trans Pattern Anal Mach Intell 2009;31(12):2211–26. http://dx.doi.org/10.1109/TPAMI.2008.240.
  • [31] Vatsa M, Singh R, Noore A. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans Syst Man Cybern Part B: Cybern 2008;38(4):1021–35. http://dx.doi.org/10.1109/TSMCB.2008.922059.
  • [32] Velisavljevic V. Low-complexity iris coding and recognition based on directionlets. IEEE Trans Inf Forensics Secur 2009;4(3):410–7. http://dx.doi.org/10.1109/TIFS.2009.2024025.
  • [33] Wildes R. Iris recognition: an emerging biometric technology. Proc IEEE 1997;85(9):1348–63. http://dx.doi.org/10.1109/5.628669.
  • [34] Woodard D, Pundlik S, Miller P. On the fusion of periocular and iris biometrics in non-ideal imagery. 20th International Conference on Pattern Recognition (ICPR). 2010. pp. 201–4. http://dx.doi.org/10.1109/ICPR.2010.58.
  • [35] Woodard D, Pundlik S, Miller P, Lyle J. Appearance-based periocular features in the context of face and non-ideal iris recognition. J Signal Image Video Process 2011;5(4):443–55. http://dx.doi.org/10.1007/s11760-011-0248-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc7e266-a55c-4aed-b5ba-3f2eac89eda0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.