Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the application of ArcGIS for environmental modelling of the landscapes in northern Iceland (17.00°W–23.00°W, 64.30°N–67.00°N). The aim was to explore the vegetation distribution by NDVI and ISOCLUST classification of the land cover types. Data include the Landsat TM image. Freely available satellite remote sensing data from the Landsat mission have been processed by GIS to deliver information on land cover types from image classification and NDVI vegetation index. Landsat products provide geospatial data on regional scale with moderate temporal (weekly) and spatial (30–10 m) resolution, making them useful for environmental monitoring and landscape studies. The tools include the ArcGIS software used for raster processing. Data processing was performed in the three steps: 1) comparative analysis of the visualized sixteen band combinations to assess the distinguishability of vegetation and other land cover types in colour composites; 2) computed NDVI standardized vegetation index; 3) unsupervised classification of the Landsat TM by the ISOCLUST algorithm. Large glaciers Hofsjökull and Langjökull were detected on various colour composites, and the visibility of the water/land borders is assessed (Blöndulón lake), agricultural areas near the Varmahlíð, vegetated areas around the Akrahreppur municipality. Computing the NDVI and using ISOCLUST by ArcGIS software enabled to distinguish various land cover types and map landscapes in the study area. The computed NDVI shown the presence and condition of vegetation, that is, a relative biomass in the area of northern Iceland. The NDVI was used based on the contrast of the two channels from a multispectral Landsat TM raster data.
Czasopismo
Rocznik
Tom
Strony
147--167
Opis fizyczny
Bibliogr. 77 poz., rys.
Twórcy
autor
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis. Building L, Campus de Solbosch, Avenue Franklin Roosevelt 50, Brussels 1000, Belgium
Bibliografia
- Abdi A.M., Carrié R., Sidemo-Holm W., Cai Z., Boke-Olén N., Smith H.G., Eklundh L., Ekroos J. 2021. Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing. Ecological Indicators, 130, 108098. https://doi.org/10.1016/j.ecolind.2021.108098
- Ali I., Cawkwell F., Dwyer E., Barrett B., Green S. 2016. Satellite remote sensing of grasslands: from observation to management. Journal of Plant Ecology, 9(6), 649–671. https://doi.org/10.1093/jpe/rtw005
- Babiy L., Hrytskiv N., Laykun L. 2017. Thematic mapping of avalanche-threatened areas. Geomatics, Landmanagement and Landscape, 4, 15–26. https://doi.org/10.15576/GLL/2017.4.15
- Ball G.H., Hall D.J. 1965. A Novel Method of Data Analysis and Pattern Classification. Stanford Research Institute, Menlo Park, California.
- Bauer A., Bostrom A.G., Ball J., Applegate C., Cheng T., Laycock S., Rojas S.M., Kirwan J., Zhou J. 2019. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Horticulture Research 6, 70. https://doi.org/10.1038/s41438-019-0151-5
- Butte S., Vakanski A., Duellman K., Wang H., Mirkouei A. 2021. Potato Crop Stress Identification in Aerial Images using Deep Learning-based Object Detection. Agronomy Journal, 00,1−12. https://doi.org/10.1002/agj2.20841
- Campos-Taberner M., García-Haro F.J., Martínez B., Izquierdo-Verdiguier E., Atzberger C., Camps-Valls G., Gilabert M.A. 2020. Understanding deep learning in land use classification based on Sentinel-2 time series. Scientific Reports, 10, 17188. https://doi.org/10.1038/s41598-020-74215-5
- Challinor A.J., Müller C., Asseng S., Deva C., Nicklin K.J., Wallach D., Vanuytrecht E., Whitfield S., Ramirez-Villegas J., Koehler A.-K. 2018. Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 159, 296–306. https://doi.org/10.1016/j.agsy.2017.07.010
- Chen X., Zhang X., Zhang L., Liu H. 2010. NDVI data continuity between Beijing-1, TM, and SPOT. 2010 Second IITA International Conference on Geoscience and Remote Sensing, 2010, 202–205. https://doi.org/10.1109/IITA-GRS.2010.5602974
- Czajka A., Szczepaniak-Koltun Z. 2017. Analysis of transaction price of undeveloped real estate of Kołobrzeg with the use of GIS technology. Geomatics, Landmanagement and Landscape, 4, 27–37. https://doi.org/10.15576/GLL/2017.4.27
- Colwell R. 1981. Remote Sensing and Spatial Information. Nature, 293, 364. https://doi.org/10.1038/293364a0
- Crippen R.E. 1990. Calculating the vegetation index faster. Remote Sensing of Environment, 34, 71–73. https://doi.org/10.1016/0034-4257(90)90085-Z
- Cross A.M., Settle J.J., Drake N.A., Pävinen R.T.M. 1991. Subpixel measurement of tropical forest cover using AVHRR data. International Journal of Remote Sensing, 12, 1119–1129. https://doi.org/10.1080/01431169108929715
- Davies D.L., Bouldin D.W. 1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 1(2), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909
- Daughtry C.S.T. 2001. Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93, 125–131. https://doi.org/10.2134/agronj2001.931125x
- Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34 (1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
- Hao J., Pan M., Wang D., Zhao L., Zhao D. 2014. A new web chart service and applications system based on arcgis. Proceedings of the 33rd Chinese Control Conference, 3411–3414. https://doi.org/10.1109/ChiCC.2014.6895504
- Hüttich C., Gessner U., Herold M., Strohbach B.J., Schmidt M., Keil M., Dech S. 2009. On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia. Remote Sensing, 1(4), 620–643.
- Jianhua W., Zhenwen P. 2012. Water Environment Monitoring Information System Based on ASP.NET and ArcGIS Server. 2012 Third World Congress on Software Engineering, 211–214. https://doi.org/10.1109/WCSE.2012.51
- Kaufman Y.J., Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOSMODIS. IEEE Transactions on Geoscience and Remote Sensing, 92, 261–270. https://doi.org/10.1109/36.134076
- Kerdiles H., Grondona M.O. 1995. NOAA-AVHRR NDVI decomposition and sub-pixel classification using linear mixing in the Argentinean Pampa. International Journal of Remote Sensing, 16, 1303–1325. https://doi.org/10.1080/01431169508954478
- Kerkech M., Hafiane A., Canals R. 2018. Deep leaning approach with colourimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture, 155, 237–243. https://doi.org/10.1016/j.compag.2018.10.006
- Khan M.R., de Bie C.A.J.M., van Keulen H., Smaling E.M.A., Real R. 2010. Disaggregating and mapping crop statistics using hypertemporal remote sensing. International Journal of Applied Earth Observation and Geoinformation, 12, 36–46. https://doi.org/10.1016/j.jag.2009.09.010
- Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28–42. https://doi.org/10.2478/s13533-012-0120-0
- Klaučo M., Gregorová B., Koleda P., Stankov U., Marković V., Lemenkova P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(1), 449–458. https://doi.org/10.30638/eemj.2017.045
- Lassalle G., Credoz A., Hédacq R., Bertoni G., Dubucq D., Fabre S., Elger A. 2019. Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression. Ecotoxicology and Environmental Safety, 184, 109654. https://doi.org/10.1016/j.ecoenv.2019.109654
- Lemenkova P. 2013. Monitoring Changes in Agricultural Landscapes of Central Europe, Hungary: Application of ILWIS GIS for Image Processing. Geoinformatics: Theoretical and Applied Aspects. Ukraine, Kyiv, 13–16 May, 2013. https://doi.org/10.3997/2214-4609.20142479
- Lemenkova P. 2015. Analysis of Landsat NDVI Time Series for Detecting Degradation of Vegetation. Geoecology and Sustainable Use of Mineral Resources. From Science to Practice. Belgorod, Russia, 11–13. https://doi.org/10.6084/m9.figshare.7211795
- Lemenkova P. 2019a. K-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic Data. International Journal of Informatics and Applied Mathematics, 2(1), 1–26. https://doi.org/10.6084/m9.figshare.9891203
- Lemenkova P. 2019b. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–84. https://doi.org/10.3846/ gac.2019.3785
- Lemenkova P. 2019c. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65(4), 1–22. https://doi.org/10.35180/gse-2019-0020
- Lemenkova P. 2020a. SAGA GIS for information extraction on presence and conditions of vegetation of northern coast of Iceland based on the Landsat TM. Acta Biologica Marisiensis 3(2), 10–21. https://doi.org/10.2478/abmj-2020-0007
- Lemenkova P. 2020b. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: A Case Study of Northern Iceland. Advanced Research in Life Sciences, 4(1), 70–78. https://doi.org/10.2478/arls-2020-0021
- Lemenkova P. 2020c. R Libraries {dendextend} and {magrittr} and Clustering Package scipy. Cluster of Python for Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering, 13(1), 5–12. https://doi.org/10.2478/cjece-2020-0002
- Lemenkova P. 2020d. Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning by SAGA GIS. Transylvanian Review of Systematical and Ecological Research, 22(3), 17–34. https://doi.org/10.2478/trser-2020-0015
- Lemenkova P. 2021a. SAGA GIS for Computing Multispectral Vegetation Indices by Landsat TM for Mapping Vegetation Greenness. Contemporary Agriculture, 70(1–2), 67–75. https://doi.org/10.2478/contagri-2021-0011
- Lemenkova P. 2021b. Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Reports, 1 (1), 67–85. https://doi.org/10.5817/CPR2021-1-6
- Li C., Li H., Li J., Lei Y., Li C., Manevski K., Shen Y. 2019. Using NDVI percentiles to monitor real-time crop growth. Computers and Electronics in Agriculture, 162, 357–363. https://doi.org/10.1016/j.compag.2019.04.026
- Li R., Liu J. 2004. Estimating wetland vegetation biomass in the Poyang Lake of central China from Landsat ETM data. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 7, 4590–4593. https://doi.org/10.1109/IGARSS.2004.1370177
- Lv H., Wang Y., Yang Y. 2017. Thin cloud detection using spectral similarity in coastal and blue bands of Landsat-8 data. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017, 4677–4680. https://doi.org/10.1109/IGARSS.2017.8128045
- Mccloy K.R. 2006. Resource Management Information Systems: Remote Sensing, GIS and Modelling. 2nd ed., CRC Taylor & Francis.
- Mendenhall C.D., Karp D.S., Meyer C.F.J., Hadly E.A., Daily G.C. 2014. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213–217. https://doi.org/10.1038/nature13139
- Mroz M., Sobieraj A. 2004. Comparison of Several Vegetation Indices Calculated on the Basis of a Seasonal Spot XS Time Series, and their Suitability for Land Cover and Agricultural Crop Identification. Technical Sciences, 7, 39–66.
- Nagendra H., Lucas R., Honrado J.P., Jongman R.H.G., Tarantino C., Adamo M., Mairota P. 2013. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59. https://doi.org/10.1016/j.ecolind.2012.09.014
- Olson D., Chatterjee A., Franzen D.W., Day S.S. 2019. Relationship of Drone-Based Vegetation Indices with Corn and Sugarbeet Yields. Agronomy Journal, 111, 2545–2557. https://doi.org/10.2134/agronj2019.04.0260
- Onishi M., Ise T. 2021. Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports, 11, 903. https://doi.org/10.1038/s41598-020-79653-9
- Pabi O., Adu-Asare A., Ofori B.D. 2020. Linking Optical SPOT and Unmanned Aerial Vehicle data for a rapid biomass estimation in a Forest-savanna Transitional Zone of Ghana. West African Journal of Applied Ecology, 28(1), 1–20.
- Peng B., Guan K., Tang J., Ainsworth E.A., Asseng S., Bernacchi C.J., Cooper M., Delucia E.H., Elliott J.W., Ewert F., Grant R.F., Gustafson D.I., Hammer G.L., Jin Z., Jones J.W., Kimm H., Lawrence D.M., Li Y., Lombardozzi D.L., Marshall-Colon A., Messina C.D., Ort D.R., Schnable J.C., Vallejos C.E., Wu A., Yin X., Zhou W. 2020. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 6, 338–348. https://doi.org/10.1038/s41477-020-0625-3
- Pradeep Kumar B., Raghu Babu K., Ramachandra M., Krupavathi C., Narayana Swamy B., Sreenivasulu Y., Rajasekhar M. 2020. Data on identification of desertified regions in Anantapur district, Southern India by NDVI approach using remote sensing and GIS. Data in Brief, 30, 105560. https://doi.org/10.1016/j.dib.2020.105560
- Qi J., Chehbouni A., Huete A.R., Kerr Y.H., Sorooshian S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48, 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
- Rappaport D.I., Royle J.A., Morton D.C. 2020. Acoustic space occupancy: Combining eco acoustics and lidar to model biodiversity variation and detection bias across heterogeneous landscapes. Ecological Indicators, 113, 106172. https://doi.org/10.1016/j.ecolind.2020.106172
- Richards J.A. 1986. Remote Sensing Digital Image Analysis: An Introduction. Springer-Verlag, Berlin.
- Rondeaux G., Steven M., Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107. https://doi.org/10.1016/0034-4257(95)00186-7
- Rubin J. 1967. Optimal classification into groups: an approach for solving the taxonomy problem. Journal of Theoretical Biology, 15, 103–144.
- Schenke H.W., Lemenkova P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der PetschoraSee. Hydrographische Nachrichten, 81, 16–21. https://doi.org/10.6084/m9.figshare.7435538
- Silleos N.G., Alexandridis T.K., Gitas I.Z., Perakis K. 2006. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399
- Somvanshi S.S., Kumari M. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences, 7, 100032. https://doi.org/10.1016/j.acags.2020.100032
- Suetova I.A., Ushakova L.A., Lemenkova P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142. https://doi.org/10.6084/m9.figshare.7435535
- Suetova I.A., Ushakova L.A., Lemenkova P. 2005. Geoecological Mapping of the Barents Sea Using GIS. International Cartographic Conference (ICC), La Coruna, Spain. https://doi.org/10.6084/m9.figshare.7435529
- Suomalainen J., Oliveira R.A., Hakala T., Koivumäki N., Markelin L., Näsi R., Honkavaara E. 2021. Direct reflectance transformation methodology for drone-based hyperspectral imaging. Remote Sensing of Environment, 266, 1, 112691. https://doi.org/10.1016/j.rse.2021.112691
- Suriga S., Hashimoto M., Hoshino B., Saixialt, Ganzorig S. 2012. Change detection method for pasture degradation using RGB color composite image of multitemporal Landsat TM. A case study of the Inner Mongolian settlement region. 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, 6267–6270. https://doi.org/10.1109/IGARSS.2012.6352691
- Taufik A., Ahmad S.S.S., Ahmad A. 2016. Classification of Landsat 8 satellite data using NDVI thresholds. Journal of Telecomunication Electronic and Computer Engineering, 8(4), 37–40.
- Teganya Y., Romero D. 2020. Data-Driven Spectrum Cartography via Deep Completion Autoencoders. ICC 2020 – 2020 IEEE International Conference on Communications (ICC), 1–7. https://doi.org/10.1109/ICC40277.2020.9149400
- Tripathi M.K., Govil H. 2019. Evaluation of analogical analysis techniques in interpretation of lineaments and litho-boundaries using Landsat 7 ETM+ imagery of western Jahajpur belt, Bhilwara, Rajasthan, India. 2019 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, 213–217. https://doi.org/10.1109/ISCON47742.2019.9036196
- Walter-Shea E.A., Privette J., Cornell D., Mesarch M.A., Hays C.J. 1997. Relations between directional spectral vegetation indices and leaf area and absorbed radiation in Alfalfa. Remote Sensing of Environment, 61, 162–177. https://doi.org/10.1016/S0034-4257(96)00250-7
- Weiss M., Jacob F., Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j. rse.2019.111402
- Westinga E., Beltrana A.P.R., De Bie C.A.J.M., Van Gils H.A.M.J. 2020. A novel approach to optimize hierarchical vegetation mapping from hyper temporal NDVI imagery, demonstrated at national level for Namibia. International Journal of Applied Earth Observation and Geoinformation, 91, 102152. https://doi.org/10.1016/j.jag.2020.102152
- Wilson S., Mitchell G.W., Pasher J. et al. 2017. Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecological Indicators, 83, 218–226. https://doi.org/10.1016/j.ecolind.2017.07.059
- Xie Y., Sha Z., Yu M. 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005
- Xu R., Wunsch D.C. 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks and Learning Systems, 16(3), 645–678. https://doi.org/10.1109/TNN.2005.845141
- Yagci A.L., Di L., Deng M. 2014. The influence of land cover-related changes on the NDVIbased satellite agricultural drought indices. 2014 IEEE Geoscience and Remote Sensing Symposium, 2014, 2054–2057. https://doi.org/10.1109/IGARSS.2014.6946868
- Yan Y., Jarvie S., Zhang Q., Zhang S., Han P., Liu Q., Liu P. 2021. Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecological Indicators, 130, 108086. https://doi.org/10.1016/j.ecolind.2021.108086
- Yang M., Liu T., Wang X., Yan Y., Hu R., Zhu Q. 2017. Design of WebGIS System Based on Javascript and ArcGIS Server. International Conference on Smart Grid and Electrical Automation (ICSGEA), 709–712. https://doi.org/10.1109/ICSGEA.2017.68
- Yang B., Xu Y. 2021. Applications of deep-learning approaches in horticultural research: a review. Horticulture Research, 8, 123. https://doi.org/10.1038/s41438-021-00560-9
- Zhang S., Liu L., Liu X., Liu Z. 2016. Development of a new BRDF-Resistant vegetation index for improving the estimation of leaf area index. Remote Sensing, 8, 947.
- Zhang H., Ma J., Chen C., Tian X. 2020. NDVI-Net: A fusion network for generating highresolution normalized difference vegetation index in remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 182–196.
- Zhi Z., Yin H., Lu N., Zhang X., Yu K., Guo X., Qi H. 2019. Spatial-Temporal Changes of Vegetation Restoration in Yan’an Based on MODIS NDVI and Landsat NDVI. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), p1-5. https://doi.org/10.1109/ICSIDP47821.2019.9173313
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc4e2f5-8a66-4b72-b058-8884ede95cb4