Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
SnO2-TiO2, a composite ceramic electronic element was produced by employing a cost-effective and reliable method known as the solid-state synthesis process. The phase, microstructure, chemical composition, and electrical characteristics across a wide frequency range of 1 kHz-1 MHz were evaluated in detail to comprehend this electronic candidate as a capacitive component. The XRD study revealed a polycrystalline tetragonal structure with a crystallite size of 57.9 nm. The SEM micrograph revealed uniformly distributed grains and the calculated average grain size is 0.199 μm. A hydrophilic porous nature was also ascertained from the SEM micrograph. A high dielectric constant (2623) with low dielectric loss (7.5) resulted at the 1 kHz frequency and 400°C. The enhanced capacitive nature was determined by impedance spectroscopy under an extensive frequency and temperature range. The mechanism and nature of conduction at various temperatures were ascertained from the conductivity analysis. The electric modulus characteristics substantiate the non-Debye relaxation of this composite. Based on the comprehensive results, the synthesized component can have prospective applications as a capacitive component for humidity sensors and other electronic devices.
Czasopismo
Rocznik
Tom
Strony
183--190
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
- Faculty of Engineering and Technology (ITER), Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
autor
- Faculty of Engineering and Technology (ITER), Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
autor
- Faculty of Engineering and Technology (ITER), Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
Bibliografia
- 1. He Z., Lyu Z., Gu Q., Zhang L., Wang J., Ceramic-based membranes for water and wastewater treatment, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 578, 123513, DOI: 10.1016/j.colsurfa.2019.05.074.
- 2. Colder H., Guilmeau E., Harnois C., Marinel S., Retoux R., Savary E., Preparation of Ni-doped ZnO ceramics for thermoelectric applications, Journal of the European CeramicSociety 2011, 31(15), 2957-2963, DOI: 10.1016/j.jeurceramsoc.2011.07.006.
- 3. Choi J.H., Kim Y.M., Park Y.W., Park T.H., Jeong J.W., Choi H.J., Song E.H., Lee J.W., Kim C.H., Ju B.K., Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications, Nanotechnology 2010, 21(47), 475203, DOI: 10.1088/0957-4484/ 21/47/475203.
- 4. Ates T., Tatar C., Yakuphanoglu F., Preparation of semiconductor ZnO powders by sol-gel method: Humidity sensors, Sensors and Actuators A: Physical 2013, 190, 153-160, DOI: 10.1016/j.sna.2012.11.031.
- 5. Shahraki M.M., Alipour S., Mahmoudi P., Karimi A., Novel multifunctional capacitor-varistor ceramics based on SnO2, Ceramics International 2018, 44(16), 20386-20390, DOI: 10.1016/j.ceramint.2018.08.031.
- 6. Phule P.P., Risbud S.H., Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system, Journal of Materials Science 1990, 25, 1169-1183, DOI: 10.1007/BF00585422.
- 7. Das S.N., Relaxor (Pb0.7Bi0.3)(Mg0.231Nb0.462Fe0.3)O3 electronic compound for magnetoelectric field sensor applications, Journal of Applied Physics 2020, 128, 114101, DOI: 10.1063/5.0014110.
- 8. Krishnakumar T., Jayaprakash R., Singh V.N., Mehta B.R., Phani A.R., Synthesis and characterization of tin oxide nanoparticle for humidity sensor applications, International Journal of Nano Research 2008, 4, 91-101, DOI: 10.4028/.scientific.net/JNanoR.4.91.
- 9. Wang X., Sang Y., Wang D., Ji S., Liu H., Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure, Journal of Alloys and Compounds 2015, 639, 571-576, DOI: 10.1016/j.jallcom. 2015.03.193.
- 10. Yawale S.P., Yawale S.S., Lamdhade G.T., Tin oxide and zinc oxide based doped humidity sensors, Sensors and Actuators A: Physical 2007, 135(2), 388-393, DOI: 10.1016/j.sna.2006.08.001.
- 11. Otitoju T.A., Okoye P.U., Chen G., Li Y., Okoye M.O., Li S., Advanced ceramic components: Materials, fabrication, and applications, Journal of Industrial and Engineering Chemistry 2020, 85, 34-65, DOI: 10.1016/j.jiec.2020.02.002.
- 12. Li W., Liu J., Ding C., Bai G., Xu J., Ren Q., Li J., Fabrication of ordered SnO2 nanostructures with enhanced humidity sensing performance, Sensors 2017, 17(10), 2392, DOI: 10.3390/s17102392.
- 13. Zhao Y., Yang B., Liu J., Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor, Sensors and Actuators B: Chemical 2018, 271, 256-263, DOI: 10.1016/j.snb.2018.05.084.
- 14. Sahoo L., Bhuyan S., Das S.N., Temperature-frequency dependent electrical properties of tin oxide-titania based capacitive electronic component, Applied Physics A 2022, 128, 1136, DOI: 10.1007/s00339-022-06264-8.
- 15. Sahoo L., Bhuyan S., Das S.N., Synthesis and electrical characterizations of (Sn0.8Ti0.2)O2 electronic material, Phase Transitions 2023, 96, 1-14, DOI: 10.1080/01411594.2023.2219808.
- 16. Jarzebski Z.M., Morton J.P., Physical properties of SnO2 materials: III. Optical properties, Journal of the Electrochemical Society 1976, 123(10), 333C, DOI: 10.1149/1.2132647.
- 17. Zhang D., Sun Y.E., Li P., Zhang Y., Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing, ACS Applied Materials & Interfaces 2016, 8(22), 14142-14149, DOI: 10.1021/acsami.6b02206.
- 18. Tawale J.S., Gupta G., Mohan A., Kumar A., Srivastava A.K., Growth of thermally evaporated SnO2 nanostructures for optical and humidity sensing application, Sensors and Actuators B: Chemical 2014, 201, 369-377, DOI: 10.1016/j.snb.2014.04.099.
- 19. Nisiro D., Fabbri G., Celotti G.C., Bellosi A., Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics, Journal of Materials Science 2003, 38, 2727-2742, DOI: 10.1023/A:1024459307992.
- 20. Chenaina H., Messaadi C., Jalali J., Ezzaouia H., Study of structural, optical and electrical properties of SnO2 doped TiO2 thin films prepared by a facile sol-gel route, Inorganic Chemistry Communications 2021, 124, 108401, DOI: 10.1016/j.inoche.2020.108401.
- 21. Kim H.K., Sathaye S.D., Hwang Y.K., Jhung S.H., Hwang J.S., Kwon S.H., Park S.E., Chang J.S., Humidity sensing properties of nanoporous TiO2-SnO2 ceramic sensors, Bulletin of the Korean Chemical Society 2005, 26(11), 1881-1884, DOI: 10.5012/bkcs.2005.26.11.1881.
- 22. Chen Z., Lu C., Humidity sensors: a review of materials and mechanisms, Sensor Letters 2005, 3(4), 274-295, DOI: 10.1166/sl.2005.045.
- 23. Kumar V., Chauhan V., Ram J., Gupta R., Kumar S., Chaudhary P., Yadav B.C., Ojha S., Sulania I., Kumar R., Study of humidity sensing properties and ion beam induced modifications in SnO2-TiO2 nanocomposite thin films, Surface and Coatings Technology 2020, 392, 125768, DOI: 10.1016/j.surfcoat.2020.125768.
- 24. Faia P.M., Furtado C.S., Ferreira A.J., Humidity sensing properties of a thick-film titania prepared by a slow spinning process, Sensors and Actuators B: Chemical 2004, 101(1-2), 183-190, DOI: 10.1016/j.snb.2004.02.050.
- 25. Das S.N., Pattanaik A., et al., Dielectric and impedance spectroscopy of Ni doped BiFeO3-BaTiO3 electronic system, Journal of Materials Science: Materials in Electronics 2016, 27, 10099-10105, DOI: 10.1007/s10854-016-5084-2.
- 26. Sahoo L., Bhuyan S., Das S.N., Structural, morphological, and impedance spectroscopy of Tin oxide-Titania based electronic material, Physica B: Condensed Matter 2023, 654, 414705, DOI: 10.1016/j.physb.2023.414705.
- 27. Messaadi C., Ghrib T., Jalali J., Ghrib M., Alyami A.A., Gaidi M., Silvan M.M., Ezzaouia H., Synthesis and characterization of SnO2-TiO2 nanocomposites photocatalysts, Current Nanoscience 2019, 15(4), 398-406, DOI: 10.2174/ 1573413714666180927110912.
- 28. Gay P.B., Hirsch P.B., Kelly A., The estimation of dislocation densities in metals from X-ray data, Acta metallurgica 1953, 1(3), 315-319, DOI: 10.1016/0001-6160(53)90106-0.
- 29. Barick B.K., Mishra K.K., Arora A.K., Choudhary R.N.P., Pradhan D.K., Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3, Journal of Physics D: Applied Physics 2011, 44(35), 355402, DOI: 10.1088/0022-3727/44/35/ 355402.
- 30. Das S.N., Pradhan S.K., Kar D.P., Bhuyan S., Choudhary R.N.P., Excitation performance of fabricated PMN-BFO relaxor through electric field, Journal of Materials Science: Materials in Electronics 2018, 29, 9375-9379, DOI: 10.1007/s10854-018-8969-4.
- 31. Singh L., Rai U.S., Mandal K.D., Rai A.K., Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic, Applied Physics A 2013, 112, 891-900, DOI: 10.1007/s00339-012-7443-z.
- 32. Das S.N., Pradhan S., et al., Modification of relaxor and impedance spectroscopy properties of lead magnesium niobate by bismuth ferrite, Journal of Electronic Materials 2017, 46, 1637-1649, DOI: 10.1007/s11664-016-5207-9.
- 33. Sahoo L., Patnaik D., Bhuyan S., Das S.N., Structural, dielectric, and impedance spectroscopy investigation of titanium dioxide electronic system, Materials Today: Proceedings 2022, 67, 1159-1163, DOI: 10.1016/j.matpr.2022.07.330.
- 34. Prodromakis T., Papavassiliou C., Engineering the Maxwell-Wagner polarization effect, Applied Surface Science 2009, 255(15), 6989-6994, DOI: 10.1016/j.apsusc.2009.03.030.
- 35. Tripathy A., Pramanik S., Manna A., Azrin Shah N.F., Shasmin H.N., Radzi Z., Abu Osman N.A., Synthesis and characterizations of novel Ca-Mg-Ti-Fe-oxides based ceramic nanocrystals and flexible film of polydimethylsiloxane composite with improved mechanical and dielectric properties for sensors, Sensors 2016, 16(3), 292, DOI:10.3390/s16030292.
- 36. Patnaik D., Nayak P.P., Bhuyan S., Das S.N., Structural, microstructural, and electrical behavior of a relaxor (Mg0.5W0.5)(Pb0.5Ni0.5)O3 electronic material, Journal of the Australian Ceramic Society 2023, DOI: 10.1007/s41779-023-00914-7.
- 37. Zhong M., Kumar N.P., Sagar E., Jian Z., Yemin H., Reddy P.V., Structural, magnetic and dielectric properties of Y doped BiFeO3, Materials Chemistry and Physics 2016, 173, 126-131, DOI: 10.1016/j.matchemphys.2016.01.047.
- 38. Pradhan S.K., Das S.N., Halder S., Bhuyan S., Choudhary R.N., Dielectric dispersion and impedance spectroscopy of yttrium doped BiFeO3-PbTiO3 electronic system, Journal of Materials Science: Materials in Electronics 2017, 28, 9627-9633, DOI: 10.1007/s10854-017-6712-1.
- 39. Pradhan S.K., Das S.N., Bhuyan S., Behera C., Padhee R., Choudhary R.N., Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3–PbTiO3 electronic system, Applied Physics A 2016, 122, 1-9, DOI: 10.1007/s00339-016-0043-6.
- 40. Dhaou M.H., Hcini S., Mallah A., Bouazizi M.L., Jemni A., Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle, Applied Physics A 2017, 123, 1-9, DOI: 10.1007/s00339-016-0652-0.
- 41. Sagar R., Raibagkar R.L., Complex impedance and modulus studies of cerium doped barium zirconium titanate solid solution, Journal of Alloys and Compounds 2013, 549, 206-212, DOI: 10.1016/j.jallcom.2012.09.062.
- 42. Das S.N., Pradhan S.K., Bhuyan S., Choudhary R.N., Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system, Journal of Materials Science: Materials in Electronics 2017, 28, 18913-18928, DOI: 10.1007/s10854-017-7845-y.
- 43. Patnaik D., Nayak P.P., Bhuyan S., Das S.N., Temperature and frequency dependent dielectric and electrical properties of relaxor (Ca1/2W1/2)(Pb1/2Ni1/2)O3 electronic material, Results in Chemistry 2023, 5, 100991, DOI: 10.1016/j.rechem.2023.100991.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc4ae30-86a5-430e-a54a-aa214b8eadfc