PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-temperature corrosion resistance of NiAl(Cr)-Al2O3 coating in N2+9%O2+0.2% HCl+0.08%SO2 atmosphere

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to determine the resistance of nickel and aluminium intermetallic phase-based coatings, modified with chromium and aluminum oxides, and to determine the hypothetical mechanism of these materials’ corrosion. Design/methodology/approach: The selected results of high temperature corrosion resistance of HVOF sprayed coatings with NiAl intermetallic phases are presented. The aggressive corrosion gas included: N2+9%O2+0.2% HCl+0.08%SO2. The temperature of cyclic corrosion test was 927 K and the exposure time was 500 h. The macro and microstructure of coatings after and before corrosion test were analyzed by optics and scanning microscopy. The thermodynamically diagrams and phase diagrams of corrosion products after the test are presented. The phase composition of corrosion products was determined by X-ray analysys. Findings: The proposed mechanism and growth of corrosion products on the NiAl(Cr)-Al2O3coatings are shown. The carried out tests allow the characterisation of the properties of coatings with NiAl phase, and supplement the state of knowledge in the scope of their high temperature corrosion resistance. Practical implications: The new elaborated coating can be applied in elevated temperature and aggressive environments for protection of water walls boilers or waste combustors. Originality/value: The elaboration of proposed mechanism of growth corrosion products on the NiAl(Cr)-Al2O3coating and the presentation of reaction during the corrosion process and degradation of coating.
Rocznik
Strony
586--596
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Materials Science and Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
  • University of Labour Safety Management, Labour of Science and Technology, ul. Bankowa 8, 40-007 Katowice, Poland
Bibliografia
  • [1] N.S. Stoloff, Iron aluminides: present status and future prospects, Materials Science and Engineering A 258/1-2 (1998) 1-14.
  • [2] Ch. Xiao, W. Chen, Sulfidation resistance of CeO2-modified HVOF sprayed FeAl coatings at 700°C, Surface and Coatings Technology 201/6 (2006) 3625-3632.
  • [3] W. Kai, S.H. Lee, D.L. Chiang, J.P. Chu, The high-temperature corrosion of Fe-28Al and Fe-18Al-10Nb in a H2/H2S/H2O gas mixture, Materials Science and Engineering A 258/1-2 (1998) 146-152.
  • [4] W.H. Lee, R.Y. Lin, Oxidation, sulfidation and hot corrosion of intermetallic compound Fe3Al at 605°C and 800°C, Materials Chemistry and Physics 58/3 (1999) 231-242.
  • [5] Y.S. Li, M. Spiegel, S. Shimada, Corrosion behaviour of various model alloys with NaCl-KCl coating, Materials Chemistry and Physics 93/1 (2005) 217-223.
  • [6] Y.S. Li, M. Spiegel, Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2-KCl melt at 400-450 °C, Corrosion Science 46/8 (2004) 2009-2023.
  • [7] H.J. Grabke, Oxidation of NiAl and FeAl, Intermetallics 7/10 (1999) 1153-1158.
  • [8] G. Dercz, L. Pająk, B. Formanek, Dispersion analysis of NiAl-TiC-Al2O3 composite powder ground in a high-energy attritorial mill, Journal of Materials Processing Technology 175/1-3 (2006) 334-337.
  • [9] G. Dercz, K. Prusik, L. Pajak, T. Goryczka, B. Formanek, X-ray studies on NiAl-Cr3C2-Al2O3 composite powder with nanocrystalline NiAl phase, Journal of Alloys and Compounds 423/1-2 (2006) 112-115.
  • [10] K. Rzyman, Z. Moser, Calorimetric studies of the enthalpies of formation of Al3Ni2, AlNi and AlNi3, Progress in Materials Science 49/3-4 (2004) 581-606.
  • [11] S.M. Jiang, H.Q. Li, J. Ma, C.Z. Xu, J. Gong, C. Sun, High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: Oxidation and hot corrosion, Corrosion Science 52/7 (2010) 2316-2322.
  • [12] Z.B. Bao, Q.M. Wang, W.Z. Li, X. Liu, J. Gong, T.Y. Xiong, C. Sun, Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy, Corrosion Science 51/4 (2009) 860-867.
  • [13] B.-J. Skrifvars, M. Westén-Karlsson, M. Hupa, K. Salmenoja, Corrosion of super-heater steel materials under alkali salt deposits. Part 2: SEM analyses of different steel materials, Corrosion Science 52/3 (2010) 1011-1019.
  • [14] P.A. Marrone, G.T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes, Journal of Supercritical Fluids 51/3 (2009) 83-103.
  • [15] B. Formanek, B. Szczucka-Lasota, High temperature corrosion resistance of HVOF sprayed coatings with FeAl-FexAly phases in an atmosphere of N2 + 9% O2 + 0,2% HCl+ 0,08% SO2, Corrosion Protective 50/4 (2007) 163-169.
  • [16] K. Szymański, B. Formanek, B. Szczucka-Lasota, Erosion - corrosion resistance of HVOF-sprayed chromium and tungsten carbide, Physico-Chemical Mechanics of Materials Special Issue no. 7 (2008) 230-235.
  • [17] B. Szczucka-Lasota, B. Formanek, Oxidation and corrosion resistance of NiAl intermetallic modified coating sprayed by HVOF method, Physico-Chemical Mechanics of Materials Special Issue no. 7 (2008) 254-258.
  • [18] Y. Kawahara, Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers, Journal of Thermal Spray Technology 12/2 (2007) 202-213.
  • [19] S.C. Kung, W.T. Bakker, Proceedings of the Energy Conversion for Fossil Fuel System Conference, San Diego, 1998.
  • [20] Y. Kawahara, High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment, Corrosion Science 44/2 (2002) 223-245.
  • [21] S. Mrowec, T. Werber, The metals gaseous corrosion, “Śląsk”, 1975 (in Polish).
  • [22] S.W. Banovic, J.N. DuPont, A.R. Marder, Metallographic preparation and degradation of the IJ-phase (FeAl2S4) formed after high-temperature oxidation-sulfidation of Fe-Al alloys, Materials Characterization 45/3 (2000) 241-249.
  • [23] G. Merceron, R. Molins, J.L. Strudel, I. Alliat, L. Menneron, Long term oxidation of fecral ODS alloys at high temperature, Materials Science Forum 369-372 (2001) 269-276.
  • [24] B.A. Pint, K.L. More, P.F. Tortorelli, W.D. Porter, I.G. Wright, Optimizing the Imperfect Oxidation Performance of Iron Aluminides, Materials Science Forum 369-372 (2001) 411-418.
  • [25] B.A. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect, Oxidation of Metals 45/1-2 (1996) 1-37.
  • [26] A. Zahs, M. Spiegel, H.J. Grabke, Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700°C, Corrosion Science 42/6 (2000) 1093-1122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cc37160-85a8-44e6-94ec-e7731388cdd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.