PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design methods for limiting rotor losses in a fractional slot PMSM motor with high power density

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional slot PMSM motors enable high power density factors to be obtained provided that their electromagnetic circuit, appropriate mechanical structure and cooling system are properly designed, as well as when operating at a high frequency of power supply voltage (400–800 Hz) with high magnetic saturation and high current loads (approx. 12–15 A/mm2). Such operating conditions, especially in the case of fractional slot motors, may be the reason for excessive rotor losses, mainly in the rotor yoke and permanent magnets. One of the conditions for obtaining high values of continuous power of the motor is the reduction of these losses. This paper presents selected design methods for limiting the value of rotor losses with simultaneous consideration of their influence on other motor parameters. The analysiswas carried out for a PMSM motor with an external rotor weighting approx. 10 kg and a maximum power of 50 kW at a rotational speed of 4 800 rpm.
Rocznik
Strony
963--979
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
  • Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL Al. Roździeńskiego 188, 40-203 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL Al. Roździeńskiego 188, 40-203 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL Al. Roździeńskiego 188, 40-203 Katowice, Poland
autor
  • Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL Al. Roździeńskiego 188, 40-203 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL Al. Roździeńskiego 188, 40-203 Katowice, Poland
Bibliografia
  • [1] Ramesh P., Lenin C.N., High Power Density Electrical Machines for Electric Vehicles – Comprehensive Review Based on Material Technology, IEEE Transaction on Magnetics, vol. 55, no. 11 (2019), DOI: 10.1109/TMAG.2019.2929145.
  • [2] Sudha B., Anusha V., Sachin S., A review: High power density motors for electric vehicles, Journal of Physics: Conference Series, vol. 1706, pp. 1–8 (2020), DOI: 10.1088/1742-6596/1706/1/012057.
  • [3] Wolnik T., Dukalski P., Będkowski B., Jarek T., Selected aspects of designing motor for direct vehicle wheel drive, Przegląd Elektrotechniczny (Electrical Review), vol. 96, pp. 150–153 (2020), DOI: 10.15199/48.2020.04.31.
  • [4] Bianchi N., Bolognani S., Pre M.D, Magnetic loading of fractional slot three phase PM motors with non overlapped coils, In Proceedings of the IEEE Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, USA, pp. 35–43 (2006), DOI: 10.1109/IAS.2006.256517.
  • [5] Bianchi N., Bolognani S., Fomasiero E., A General Approach to Determine the Rotor Losses in Three-Phase Fractional-Slot PM Machines, IEEE International Electric Machines and Drives Conference – Antalya, Turkey, pp. 634–641 (2007), DOI: 10.1109/IEMDC.2007.382741.
  • [6] Ishak D., Zhu Z.Q., Howe D., Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole, IEEE Transaction on Magnetics, vol. 41, pp. 2462–2469 (2005), DOI: 10.1109/TMAG.2005.854337.
  • [7] Atallah K., Howe D., Mellor P.H., Stone D.A., Rotor loss in permanent-magnet brushless AC machines, IEEE Transaction on Industry Applications, vol. 36, pp. 1612–1618 (2000), DOI: 10.1109/28.887213.
  • [8] Yu X., Guoli L., Zhe Q., Qiubo Y., Zhenggen Z., Research on rotor magnet loss in fractional-slot concentrated-windings permanent magnet motor, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, pp. 1616–1620 (2016).
  • [9] Aslan B., Semail E., Legranger J., General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multiphase PM Machines With Concentrated Winding, IEEE Transactions on Energy Conversion, vol. 29, pp. 72–83 (2014), DOI: 10.1109/TEC.2013.2292797.
  • [10] Wolnik T., Styskala V., Hrbac R., Lyaschenko A.M., The Problem of Rotor Eddy-Current Losses in A Permanent Magnet Motor with High Power Density, In Proceedings of the International Conference on Intelligent Information Technologies for Industry IITI2021, Sochi, Russia, pp. 501–512 (2021), DOI: 10.1007/978-3-030-87178-9_50.
  • [11] Aslan B., Semail E., Korecki J., Legranger J., Slot/pole combinations choice for concentrated multi-phase machines dedicated to mild-hybrid applications, IECON 2011 – 37th Annual Conference of the IEEE Industrial Electronics Society, pp. 3698–3703 (2011).
  • [12] Ede J., Atallah K., Jewell G.W., Wang J.B., Howe D., Effect of Axial Segmentation of Permanent Magnets on Rotor Loss in Modular Permanent-Magnet Brushless Machines, IEEE Transactions on Industry Applications, vol. 43, pp. 1207–1213 (2007), DOI: 10.1109/TIA.2007.904397.
  • [13] Wan-Ying Huang, Bettayeb A., Kaczmarek R., Vannier J.-C., Optimization of Magnet Segmentation for Reduction of Eddy-Current Losses in Permanent Magnet Synchronous Machine, IEEE Transactions on Energy Conversion, vol. 25, pp. 381–387 (2010), DOI: 10.1109/TEC.2009.2036250.
  • [14] Młot A., Kowol M., Kołodziej J., Lechowicz A., Skrobotowicz P., Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 467–481 (2020), DOI: 10.24425/aee.2020.133038.
  • [15] Wills D.A., Kamper M.J., Reducing PM eddy current rotor losses by partial magnet and rotor yoke segmentation, IEEE 2010 XIX International Conference on Electrical Machines (ICEM), Rome, Italy (2010).
  • [16] Yamazaki K., Shina M., Kanou Y., Miwa M., Hagiwara J., Effect of Eddy Current Loss Reduction by Segmentation of Magnets in Synchronous Motors: Difference Between Interior and Surface Types, IEEE Transactions on Magnetics, vol. 45, pp. 4756–4759 (2009), DOI: 10.1109/TMAG.2009.2024159.
  • [17] Sun X., Shi Z., Guo Y., Zhu J., Multi-Objective Design Optimization of an IPMSM Based on Multilevel Strategy, IEEE Transactions on Industrial Electronics, vol. 68, pp. 139–148 (2021), DOI: 10.1109/TIE.2020.2965463.
  • [18] Sun X., Shi Z., Zhu J., Multiobjective Design Optimization of an IPMSM for EVs Based on Fuzzy Method and Sequential Taguchi Metod, IEEE Transactions on Industrial Electronics, vol. 68, pp. 10592–10600 (2021), DOI: 10.1109/TIE.2020.3031534.
  • [19] Wolnik T., Alternate computational method for induction disk motor based on 2D FEM model of cylindrical motor, Archives of Electrical Engineering, vol. 69, no. 1, pp. 233–244 (2020), DOI: 10.24425/aee.2020.131770.
  • [20] Wilamowski B.M., Irwin J.D., Power Electronics and Motor Drives, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA (2011).
  • [21] Wolnik T., Styskala V., Mlcak T., Study on the Selection of the Number of Magnetic Poles and the Slot-Pole Combinations in Fractional Slot PMSM Motor with a High Power Density, Energies, vol. 15, no. 1, p. 215 (2022), DOI: 10.3390/en15010215.
  • [22] Zhao N., Zhu Z.Q., Liu W., Rotor Eddy Current Loss Calculation and Thermal Analysis of Permanent Magnet Motor and Generator, IEEE Transactions on Magnetics, vol. 47, pp. 4199–4202 (2011), DOI: 10.1109/TMAG.2011.2155042.
  • [23] Lee T., Kim Y., Jung S.-Y., Reduction of permanent magnet eddy current loss in interior permanent magnet synchronous motor according to rotor design optimization, IEEE 2015 9th International Conference on Power Electronics and ECCE Asia, Seoul, South Korea, pp. 1712–1717 (2015).
  • [24] Przybylski M., Calculations and measurements of torque and inductance of switched reluctance motors with laminated and composite magnetic cores, Archives of Electrical Engineering, vol. 7, no. 1, pp. 125–138 (2022), DOI: 10.24425/aee.2022.140201.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cbdc0db-8ca1-4491-bbf8-ac8f67345985
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.