PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of damping properties of articular cartilage during impact load

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents some details about difficulties in modelling of articular cartilage. The most useful method to simulate a mechanism of tissue deformation during load is Finite Element Method (FEM). In this paper the authors present an approach of modelling a damping phenomenon in articular cartilage of an ankle joint. The damping property was modelled and analysed with an assumption that the reaction force is different suitable to change of a dynamic load. The model of lower extremity consists of three main bones: tibia, fibula and talus. The force acting on the model was generated from displacement of the talus according to the main biomechanical axis of a leg. The results present the role of an articular cartilage in distribution of energy inside the lower extremity. The analysis was carried out according to three main aspects: the reaction force in a support, the influence contact on the energy dissipation and the role of cartilage thickness in transmission of energy by the tibiotalar joint.
Rocznik
Strony
133--145
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • University of Zielona Góra Licealna 9, 65-419 Zielona Góra, Poland
  • University of Zielona Góra Licealna 9, 65-419 Zielona Góra, Poland
  • Military Clinical Hospital Borowska 213, 50-556 Wrocław, Poland
Bibliografia
  • 1. Hunziker E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthritis and Cartilage, 10(6): 432–463, 2002, doi: 10.1053/joca.2002.0801.
  • 2. Li G., Wan L., Kozanek M., Determination of real-time in-vivo cartilage contact deformation in the ankle joint, Journal of Biomechanics, 41(1): 128–136, 2008, doi: 10.1016/j.jbiomech.2007.07.006.
  • 3. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G., Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments, Journal of Biomechanical Engineering, 102(1): 73–84, 1980, doi: 10.1115/1.3138202.
  • 4. Bischof J.E. et al., In vivo cartilage contact strains in patients with lateral ankle instability, Journal of Biomechanics, 43(13): 2561–2566, 2010, doi: 10.1016/j.jbiomech.2010.05.013,
  • 5. Akiyama K. et al., Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and CT, Osteoarthritis and Cartilage, 18(6): 795–802, 2010, doi: 10.1016/j.joca.2010.03.007.
  • 6. Anderson D.D. et al., Physical validation of a patient-specific contact finite element model of the ankle, Journal of Biomechanics, 40(8): 1662–1669, 2007, doi: 10.1016/j.jbiomech.2007.01.024.
  • 7. Robinson L.D. et al., Mechanical properties of normal and osteoarthritic human articular cartilage, Journal of the Mechanical Behavior of Biomedical Materials, 61: 96–109, 2016, doi: 10.1016/j.jmbbm.2016.01.015.
  • 8. Garcia-Aznar J.M. et al., Load transfer mechanism for different metatarsal geometries: a finite element study, Journal of Biomechanical Engineering, 131(02): 021011–021011-7, 2009, doi: 10.1115/1.3005174.
  • 9. Melińska A., Czamara A., Szuba Ł, Będziński R., Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta of Bioengineering and Biomechanics, 17(2): 111–120, 2015, doi: 10.5277/ABB-00208-2014-04.
  • 10. Klekiel T., Biomechanical analysis of lower limb of soldiers in vehicle under high dynamic load from blast event, Series on Biomechanics, 29(2–3): 14–30, 2015.
  • 11. Bailey A.M., Christopher J.J., Salzar R.S., Brozoski F., Comparison of Hybrid-III and postmortem human surrogate response to simulated underbody blast loading, Journal of Biomechanical Engineering, 137(5): 051009–051009-10, 2015, doi: 10.1115/1.4029981.
  • 12. Niu W. et al., Effects of bone Young’s modulus on finite element analysis in the lateral ankle biomechanics, Applied Bionics and Biomechanics, 10(4): 189–195, 2013, doi: 10.3233/ABB-140085.
  • 13. Connor C.J., Nabhani F., Biomechanical evaluation of external ankle arthrodesis contact area and pressure distribution, Journal of Materials Processing Technology, 153–154: 174–178, 2004, doi: 10.1016/j.jmatprotec.2004.04.140.
  • 14. Bayod J, Becerro-de-Bengoa-Vallejo R., Losa-Iglesias M.E., Doblar´e M., Mechanical stress redistribution in the calcaneus after autologous bone harvesting, Journal of Biomechanics, 45(7): 1219–1226, 2012, doi: 10.1016/j.jbiomech.2012.01.043.
  • 15. Beddoes M.C., Whitehouse R.M., Briscoe H.W., Su B., Hydrogels as a replacement material for damaged articular hyaline cartilage, Materials, 9(6): 443, 2016, doi:10.3390/ma9060443.
  • 16. Rho J-Y., Kuhn-Spearing L., Zioupos P., Mechanical properties and the hierarchical structure of bone, Medical Engineering & Physics, 20(2): 92–102, 1998, doi: 10.1016/S1350-4533(98)00007-1.
  • 17. Xu C. et al., Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite element analysis, Knee Surgery, Sports Traumatology, Arthroscopy, 20(12): 1854–1862, 2012, doi: 10.1007/s00167-011-1762-z.
  • 18. Gannon A.R. et al., The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development, Osteoarthritis and Cartilage, 23(6): 975-984, 2016, doi: 10.1016/j.joca.2015.02.003.
  • 19. Klekiel T., Będziński R., Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion, Archives of Metallurgy and Materials, 60(3): 2115–2121, 2015, doi: 10.1515/amm-2015-0356.
  • 20. Shin J., Yue N., Untaroiu C.D., A finite element model of the foot and ankle for automotive impact applications, Annals of Biomedical Engineering, 40(12): 2519–2531, 2012, doi: 10.1007/s10439-012-0607-3.
  • 21. Suresh M. et al., Finite element evaluation of human body response to vertical impulse loading, [in:] Proceedings of the 10th World Congress on Computational Mechanics, S˜ao Paulo: Blucher, 2014, Blucher Mechanical Engineering Proceedings, 1(1): 1809-1818, 2014, doi: 10.5151/meceng-wccm2012-18555.
  • 22. Ramlee M.H., Kadir M.R.A., Murali M.R., Kamarul T., Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation – a finite element analysis, Medical Engineering & Physics, 36(10): 1358–1366, 2014, doi: 10.1016/j.medengphy.2014.07.001.
  • 23. , et al., Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system, Osteoarthritis and Cartilage, 15(2): 205–211, 2007, doi: 10.1016/j.joca.2006.07.008.
  • 24. Danso E., Honkanen J.T.J., Saarakkala S., Korhonen K.R., Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus, Journal of Biomechanics, 47(1): 200–206, 2014, doi: 10.1016/j.jbiomech.2013.09.015.
  • 25. Butz D.K., Chan D.D., Nauman A.E., Neu C.P., Stress distributions and material properties determined in articular cartilage from MRI-based finite strains, Journal of Biomechanics, 44(15): 2667–2672, 2011, doi: 10.1016/j.jbiomech.2011.08.005.
  • 26. Venturanto C. et al., Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints, Acta of Bioengineering and Biomechanics, 16(2): 57–65, 2014, doi: 10.5277/abb140207.
  • 27. Safari M. et al., Clinical assessment of rheumatic diseases using viscoelastic parameters for synovial fluid, Biorheology, 27(5): 659–674, 1990.
  • 28. Ozen M., Sayman O., Havitcioglu H., Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex, Acta of Bioengineering and Biomechanics, 15(3): 19–27, 2013.
  • 29. Nilakantan G., Tabiei A., Computational assessment of occupant injury caused by mine blasts underneath infantry vehicles, International Journal of Vehicle Structures & Systems, 1(1–3): 50–58, 2009, doi: 10.4273/ijvss.1.1-3.07.
  • 30. Dong L. et al., Blast effect on the lower extremities and its mitigation: a computational study, Journal of the Mechanical Behavior of Biomedical Materials, 28: 111–124, 2013, doi: 10.1016/j.jmbbm.2013.07.010.
  • 31. Kraft R.H., Lynch M.L., Vogel E.W., Computational failure modeling of lower extremities, Raport NATO RTO-MP-HFM-207, 2012.
  • 32. Untaroiu C.D., Yue N., Shin J., A finite element model of the lower limb for simulating automotive impacts, Annals of Biomedical Engineering, 41(3): 513–526, 2013, doi: 10.1007/s10439-012-0687-0.
  • 33. Horst D.V.J.M., Simms K.C., Maasdam V.R., Leerdam C.J.P., Occupant lower leg injury assessment in landmine detonations under a vehicle, Michael D. Gilchrist [Ed.], IUTAM Proceedings on Impact Biomechanics: From Fundamental Insights to Applications, pp. 41–49, 2005, Springer.
  • 34. Yoganandan N. et al., Dynamic axial tolerance of the human foot-ankle complex, R. H., Society of Automotive Engineers, Paper 962426, Warrendale, PA., 1996.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cbc304c-3551-4f88-924c-4b4f8e0b1bc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.