PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Guitar timbre modification through active vibration control - preliminary results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis and modification of instrument timbre is a topic of discussion in both luthier and musician literature as well as in scientific publications. The need for versatility in an instrument's timbre characteristic is particularly visible in the acoustic guitar and the multitude of common types in which it is produced, which differ in size, body shape, top plate bracing and many other factors. Depending on the required loudness as well as the expected spectral and temporal characteristics different models are used. It is worth considering whether the ability to modify an existing guitars timbre would not be valuable, allowing for greater customizability and avoiding the requirement for a vast instrument collection. This paper presents preliminary research into the modification of an acoustic guitar's timbre through application of active vibration control to its top plate. A system making use of a piezoelectric sensor-actuator pair is created, capturing the vibration at a point of the plate, performing signal processing inside a feedback loop and running the resulting signal through the actuator. The goal of this work is to present the measurement results of the acoustic guitars top plate vibration characteristic, the created system and the initial test results into the capability of such a system with regards to timbre modification. The work concludes with a summary of the observed effects and a discussion of the viability of this technology.
Rocznik
Strony
art. no. 2024313
Opis fizyczny
Bibliogr. 14 poz., il. kolor., fot., 1 rys., wykr.
Twórcy
  • AGH University of Krakow, al. Mickiewicza 30, Krakow, Poland
  • AGH University of Krakow, al. Mickiewicza 30, Krakow, Poland
  • AGH University of Krakow, al. Mickiewicza 30, Krakow, Poland
Bibliografia
  • 1. A. Kabała, R. Barczewski; Shell-solid FEM model of a violin resonance body; Vibrations in Physical Systems, 2020, 31(3), 2020308
  • 2. A. Kabała, B. Niewczyk, B. Gapiński; Violin bridge vibrations - FEM; Vibrations in Physical Systems, 2018, 29, 2018021
  • 3. T. Duerinck et al.; Experimental comparison of various excitation and acquisition techniques for modal analysis of violins; Applied Acoustics, 2021, 177, 107942
  • 4. P. Gren, K. Tatar, J. Granström, N.E. Molin, E. V. Jansson; Laser vibrometry measurements of vibration and sound fields of a bowed violin; Meas. Sci. Technol., 2006, 17(4), 635-644
  • 5. M. Flückiger, T. Grosshauser, G. Tröster; Evaluation of a Miniature Accelerometer with a Laser Doppler Vibrometer to Study Vibrations at the Neck of a Violin in Realistic Playing Scenarios; In: Proceedings of the 2017 International Symposium on Musical Acoustics, Canada, 18-22 June, 2017
  • 6. R. Kuras; Influence of the PZT Actuator Asymmetry on the LQR Control Parameters in the Active Reduction Vibrations of Beams; Vibrations in Physical Systems, 2022, 33(3), 2022305
  • 7. J.B. Liseli, J. Agnus, P. Lutz, M. Rakotondrabe; An overview of piezoelectric self-sensing actuation for nanopositioning applications: Electrical circuits, displacement, and force estimation; IEEE Trans. Instrum. Meas., 2020, 69(1), 2-14
  • 8. J. Jasiński, S. Oleś, D. Tokarczyk, M. Pluta; On the Audibility of Electric Guitar Tonewood; Archives of Acoustics, 2021, 46(4), 571-578
  • 9. S. Carral; Determining the just noticeable difference in timbre through spectral morphing: A trombone example; Acta Acustica united with Acustica, 2011, 97(3), 466-476
  • 10. G. Peeters, B.L. Giordano, P. Susini, N. Misdariis, S. McAdams; The Timbre Toolbox: Extracting audio descriptors from musical signals; J. Acoust. Soc. Am., 2011, 130(5), 2902-2916
  • 11. A. Zacharakis, K. Pastiadis, J.D. Reiss; An interlanguage unification of musical timbre: Bridging semantic, perceptual, and acoustic dimensions; Music Percept., 2015, 32(4), 394-412
  • 12. V. Alluri, P. Toiviainen; Exploring perceptual and acoustical correlates of polyphonic timbre; Music Percept., 2010, 27(3), 223-242
  • 13. DIN 45631/A1:2010-03, Berechnung des Lautstärkepegels und der Lautheit aus dem Geräuschspektrum - Verfahren nach E._Zwicker_- Änderung_1: Berechnung der Lautheit zeitvarianter Geräusche; mit CD-ROM. Berlin, 2019
  • 14. V. Válimáki; Simple design of fractional delay allpass filters; In: Proceedings of the 10th European Signal Processing Conference, Tampere, Finland, 4-8 September 2000
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cbba5ea-a739-4c03-b082-8c9fb3825c4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.