PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation and Decomposition Characteristics of Dichlorate(VII) μ-Tris(4-amino-1,2,4-triazole)copper(II)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dichlorate(VII) μ-tris(4-amino-1,2,4-triazole)copper(II) is an explosive with a performance close to that of lead azide. However, it is quite stable and has moderate sensitivity to thermal and mechanical stimuli. In order to fully characterize it as a primary explosive, its thermal decomposition kinetics were studied and some important detonation and explosion parameters (detonation heat and velocity, acceleration ability, water shock wave overpressure, and energy) were measured and/or calculated.
Rocznik
Strony
539--552
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Cudziło S., Nita M., Synthesis and Explosive Properties of Copper(II) Chlorate(VII) Coordination Polymer with 4-Amino-1,2,4-triazole bridging Ligand, J. Hazard. Mater., 2010, 177, 146-149.
  • [2] Lavrenova L.G., Larionov S.V., Grankina S.A., The Metal Complexes with 4-Amino-1,2,4-triazole (in Russian), Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim., 1979, 5, 88-92.
  • [3] Sinditskii V.P., Sokol V.I., Fogelzang A.E., Dutov M.D., Serushkin V.V., Porai-Koshits M.A., Svetlov B.C., Vibration Spectra and Structure of Coordination Compounds with 4-Amino-1,2,4-triazole as Didentate Ligand (in Russian), Zh. Neorg. Khim., 1987, 32, 1950-1955.
  • [4] Explosives for civil uses – Detonators and delays – Part 15: Determination of equivalent initiating capability, European Standard EN-13763-15, 2004.
  • [5] Bjarnholt G., Holmberg R., Explosive Expansion Works in Underwater Detonations, 6th Symposium (Int.) on Detonation, Coronado, August 24-27, 1976, 325-330.
  • [6] Backofen J.E., The Influence of Geometry and Material Properties on an Explosive’s Gurney Velocity and Energy, New Trends Res. Energ. Mater., Proc. Semin., 9th, Pardubice, 2006, 256-261.
  • [7] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, 1702-1706.
  • [8] Konkova T.S., Matyushin Y.N., Sinditskii V.P., Fogelzang A.E., Enthalpies of Formation of 4-Amino-1,2,4-triazole Coordination Compounds, Chem. Phys. Reports, 1995, 14, 858-864.
  • [9] Fried L.E., CHEETAH 1.39 User’s Manual, UCRL-MA-117541, Rev. 3, Lawrence Livermore National Laboratory, 1996.
  • [10] Hobs M.L., Baer M.R., Nonideal Thermoequilibrium Calculations Using a Large Product Species Data Base, Shock Waves, 1992, 177, 2-12.
  • [11] Trzciński W.A., Cudziło S., Paszula J., Studies of Free Field and Confined Explosions of Aluminium Enriched RDX Compositions, Propellants Explos. Pyrotech., 2007, 32(6), 502-508.
  • [12] Trzciński W.A., Application of a Cylinder Test for Determining Energetic Characteristics of Explosives, J. Techn. Phys., 2001, 42, 165-176.
  • [13] Meyer R., Kohler J., Homburg A., Explosives, Wiley-VCH, Weinheim, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cb60d58-d526-4edf-9f1b-da6fd2b567f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.