Identyfikatory
Warianty tytułu
Optymalizacja rozpływu mocy w systemie elektroenergetycznym z zastosowaniem nowoczesnych algorytmów optymalizacji interior point oraz non interior point
Języki publikacji
Abstrakty
The idea of optimal power flow (OPF) is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
W artykule zaprezentowano algorytm prymalno-dualnej metody punktu wewnętrznego oraz nowy wariant metody optymalizacji non interior point, w zastosowaniu do zadania optymalizacji rozpływu mocy w systemie elektroenergetycznym. Opisane algorytmy zostały zaimplementowane w autorskim oprogramowaniu. Przeprowadzone ekspery- menty obliczeniowe, wskazują przydatność oprogramowania i zaimplementowanych algorytmów w zakresie wyznaczenia rozwiązania zadania optymalizacji rozpływu mocy w systemie elektroenergetycznym, w tym dla modelu systemu o rozmiarach porównywalnych z rozmiarami Krajowego Systemu Elektroenergetycznego (KSE).
Wydawca
Czasopismo
Rocznik
Tom
Strony
132--146
Opis fizyczny
Bibliogr. 19 poz., il.
Twórcy
autor
- Silesian University of Technology
autor
- Silesian University of Technology
Bibliografia
- 1. Carpentier J., Contribution e l’etude do Dispatching Economique, Bull. Soc. Francaise des Electriciens, Vol. 3, s. 431–447, August 1962.
- 2. Bansal R.C., Optimization Methods for Electric Power Systems: An Overview, International Journal of Emerging Electric Power Systems 2005, Vol. 2, No. 1.
- 3. Pandya K. S., Joshi S. K., A Survey of Optimal Power Flow Methods, Journal of Theoretical and Applied Information Technology, Vol. 4, No. 5, s. 450–458, May 2008.
- 4. Capitanescu F. i in., Interior-point based algorithms for the solution of optimal power flow problems, Electric Power Systems Research 2007, Vol. 77, No. 5–6, s. 508–517.
- 5. Quintana V.H., Torres G.L., Medina-Palomo J., Interior-point methods and their applications to power systems: a classification of publications and software codes, IEEE Transactions on Power Systems 2000, Vol. 15, No. 1, s. 170–176.
- 6. Benson H.Y., Shanno D.F., Vanderbei R.J., A Comparative Study of Large-Scale Nonlinear Optimization Algorithms, Department of Operations Research and Financial Engineering, Princeton University, Princeton, Tech. Rep. ORFE 01-04, 2001.
- 7. Zimmerman R.D., Murillo-Sanchez C.E., Thomas R.J., MATPOWER: Steady- State Operations, Planning and Analysis Tools for Power Systems Research and Education, IEEE Transactions on Power Systems 2011, Vol. 26, No. 1, s. 12–19.
- 8. Xie L., Chiang H., A enhanced multiple predictor-corrector interior point method for optimal power flow, IEEE Power and Energy Society General Meeting 2010, s. 1–8.
- 9. Duvvuru N., Swarup K.S.: A Hybrid Interior Point Assisted Differential Evolution Algorithm for Economic Dispatch, IEEE Transactions on Power Systems 2011, Vol. 26, No. 2, s. 541–549.
- 10. Billups S. C., Murty K. G., Complementarity problems, Journal of Computational and Applied Mathematics, special issue on numerical analysis 2000, Vol. IV, Optimization and nonlinear equations, Vol. 124, No. 1–2, s. 303–318.
- 11. Kocot H., Korab R., Żmuda K., Planowanie pracy jednostek wytwórczych na rynku energii elektrycznej – przegląd stosowanych metod, Prace Naukowe Politechniki Śląskiej, Kwartalnik Elektryka 2009, zeszyt 3, Vol. 211, nr 1827, s. 7–31.
- 12. Kremens Z., Sobierajski M., Analiza systemów elektroenergetycznych, WNT, 1996.
- 13. Quintana V.H, Torres G.L., Introduction to interior-point methods, IEEE PICA, Santa Clara, CA, 1999.
- 14. Rider M.J. i in., Towards a fast and robust interior point method for power system applications, IEE Proceedings Generation, Transmission and Distribution 2004, Vol. 151, No. 5, s. 575–581.
- 15. Tognola G., Bacher R., Unlimited point algorithm for OPF problems, IEEE Transactions on Power Systems 1999, Vol. 14, s. 1046–1054.
- 16. De Luca T., Facchinei F., Kanzow C., A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming 1996, Vol. 75, s. 407–439.
- 17. Torres G. L., Quintana V.H., Optimal power flow by a nonlinear complementarity method, IEEE Transactions on Power Systems 2000, Vol. 15, s. 1028–1033.
- 18. Kanzow C., Some Noninterior Continuation Methods for Linear Complementarity Problems, SIAM Journal on Matrix Analysis and Applications 1996, Vol. 17, s. 851–868.
- 19. Burke J., Xu S., A non interior predictor-corrector path following algorithm for the monotone linear complementarity problem, Mathematical Programming 1997, Vol. 87, s. 113–130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cb602bc-abbe-4342-a6a1-9304f1ba4cde