PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A complexity efficient PAPR reduction scheme for FBMC-based VLC systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Visible light communication based on a filter bank multicarrier holds enormous promise for optical wireless communication systems, due to its high-speed and unlicensed spectrum. Moreover, visible light communication techniques greatly impact communication links for small satellites like cube satellites, and pico/nano satellites, in addition to inter-satellite communications between different satellite types in different orbits. However, the transmitted visible signal via the filter bank multicarrier has a high amount of peak-to-average power ratio, which results in severe distortion for a light emitting diode output. In this work, a scheme for enhancing the peak-to-average power ratio reduction amount is proposed. First, an algorithm based on generating two candidates signals with different peak-to- average power ratio is suggested. The signal with the lowest ratio is selected and transmitted. Second, an alternate direct current-biased approach, which is referred to as the addition reversed method, is put forth to transform transmitted signal bipolar values into actual unipolar ones. The performance is assessed through a cumulative distribution function of peak-to-average power ratio, bit error rate, power spectral density, and computational complexity. The simulation results show that, compared to other schemes in literature, the proposed scheme attains a great peak-to-average power ratio reduction and improves the bit the error rate performance with minimum complexity overhead. The proposed approach achieved about 5 dB reduction amount compared to companding technique, 5.5 dB compared to discrete cosine transform precoding, and 8 dB compared to conventional direct current bias of an optical filter bank multicarrier. Thus, the proposed scheme reduces the complexity overhead by 15.7% and 55.55% over discrete cosine transform and companding techniques, respectively.
Rocznik
Strony
art. no. e144919
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Egyp
  • Electrical & Computer Eng. Dept., Effat University, Jeddah, Saudi Arabia
  • Space Communication Dept., Faculty of Navigation Science & Space Technology, Beni-Suef University, Beni-Suef, Egypt
  • Department of Communication and Computer Engineering, Faculty of Engineering, Nahda University in Beni-Suef, Egypt
  • Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
Bibliografia
  • [1] Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M., & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutor. 21, 3204-3237 (2019). https://doi.org/10.1109/comst.2019.2913348
  • [2] Ciaramella, E. et al. Prospects of Visible Light Communications in Satellites. in 22nd International Conference on Transparent Optical Networks (ICTON) 1-4 (2020). https://doi.org/10.1109/icton51198.2020.9203541
  • [3] Arfaoui, M. A. et al. Physical layer security for visible light communication systems: A survey. IEEE Commun. Surv. Tutor. 22, 1887-1908 (2020). https://doi.org/10.1109/comst.2020.2988615
  • [4] Niarchou, E., Boucouvalas, A. C., Ghassemlooy, Z., Alves, L. N. & Zvanovec, S. Visible Light Communications for 6G Wireless Networks. in Third South American Colloquium on Visible Light Communications (SACVLC) 01-06 (2021). https://doi.org/10.1109/sacvlc53127.2021.9652231
  • [5] Salem, M. A., Tarrad, I. F., Youssef, M. I. & El-Kader, S. M. A. An adaptive EDCA selfishness-aware scheme for dense WLANs in 5G networks. IEEE Access 8, 47034-47046 (2020). https://doi.org/10.1109/access.2020.2979052
  • [6] Amanor, D. N., Edmonson, W. W. & Afghah, F. Intersatellite communication system based on visible light. IEEE Trans. Aerosp. Electron. Syst. 54, 2888-2899 (2018). https://doi.org/10.1109/taes.2018.2832938
  • [7] Raeen, M. S., Nella, A. & Rajagopal, M. Design and analysis of a miniaturized UWB plasmonic absorber in visible light spectrum. Optik 261, 169090 (2022). https://doi.org/10.1016/j.ijleo.2022.169090
  • [8] Shrivastava, S., Agarwal, S. & Chen, B. Asset Allotment in Hybrid RF/VLC Communication in the 400-700 THz Band. in Terahertz Wireless Communication Components and System Technologies 211-230 (Springer, 2022). https://doi.org/10.1007/978-981-16-9182-9_14
  • [9] Aller, D. G., Lamar, D. G., Miaja, P. F., Rodriguez, J. & Sebastian, J. Taking advantage of the sum of the light in outphasing technique for visible light communication transmitter. IEEE Trans. Emerg. Sel. Topics Power Electron. 9, 138-145 (2021). https://doi.org/10.1109/jestpe.2020.2965774
  • [10] Wang, F., Yang, F., Song, J. & Han, Z. Access frameworks and application scenarios for hybrid VLC and RF systems: state of the art, challenges, and trends. IEEE Commun. Mag. 60, 55-61 (2022). https://doi.org/10.1109/mcom.001.2100748
  • [11] Rodriguez, J., Lamar, D. G., Miaja, P. F., Aller, D. G. & Sebastian, J. Power-efficient VLC transmitter based on pulse-width modulated DC-DC converters and the split of the power. IEEE Trans. Power Electron. 34, 1726-1743 (2019). https://doi.org/10.1109/tpel.2018.2830881
  • [12] Hu, J. et al. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express 30, 4365 (2022). https://doi.org/10.1364/oe.447546
  • [13] El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F A. A proposed preamble channel estimation scheme for flip FBMC-based indoor VLC systems. Opto-Electron. Rev. 30, e140859 (2022). https://doi.org/10.24425/opelre.2022.140859
  • [14] Kumar, S. & Singh, P. Effect of shadowing and background radiation on optical OQAM-FBMC based visible light communication system. Opt. Quantum Electron. 54, 61 (2021). https://doi.org/10.1007/s11082-021-03437-2
  • [15] Chen, M. et al. Precoding-enabled FBMC/OQAM for short-reach IMDD transmission. IEEE Photon. Technol. Lett. 33, 1305-1308 (2021). https://doi.org/10.1109/lpt.2021.3118838
  • [16] AboulDahab, M. A., Fouad, M. M. & Roshdy, R. A. A Proposed Preamble Based Channel Estimation Method For FBMC in 5G Wireless Channels. in 35th National Radio Science Conference (NRSC) 140-148 (2018). https://doi.org/10.1109/nrsc.2018.8354382
  • [17] AboulDahab, M. A., Fouad, M. M. & Roshdy, R. A. Generalized discrete fourier transform for FBMC peak to average power ratio reduction. IEEE Access 7, 81730-81740 (2019). https://doi.org/10.1109/access.2019.2921447
  • [18] Roshdy, R. A., AboulDahab, M. A. & Fouad, M. M. A modified interference approximation scheme for improving preamble based channel estimation performance in FBMC system. Int. J. Comput. Netw. Commun. 12, 19-35 (2020). https://doi.org/10.5121/ijcnc.2020.12102
  • [19] Chen, M., Cai, Y., Zhou, J., Zhou, H., Liu, Y. & Chen, Q. Bandwidth enhancement with DAC-enabled pre-equalization and real-valued precoding for a FBMC-VLC. Opt. Lett. 47, 4826 (2022). https://doi.org/10.1364/ol.472079
  • [20] Salem, M. A., Aboul-Dahab, M. A., Abd El-kader, S.M. & Roshdy, R. A. Performance improvement for the single carrier in FBMC systems by PAPR reduction. Int. J. Comput. Netw. Commun. 14, 17-30 (2022). https://doi.org/10.5121/ijcnc.2022.14502
  • [21] Chen, R. et al. Visible Light Communication Using DC-Biased Optical Filter Bank Multi-Carrier Modulation. in 2018 Global LIFI Congress (GLC) 1-6 (2018). https://doi.org/10.23919/glc.2018.8319094
  • [22] Abdalla, H. F., Hassan, E. S. & Dessouky, M. I. Peak to average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) and orthogonal frequency division multicarrier (OFDM) based visible light communication systems. J. Opt. Commun. Netw. 2020, 000010151520200085 (2020). https://doi.org/10.1515/joc-2020-0085
  • [23] Shi, J., He, J., Zhang, R. & Deng, R. Experimental demonstration of blind equalization for OFDM/OQAM-VLC system. Opt. Eng. 58, 066106 (2019). https://doi.org/10.1117/1.oe.58.6.066106
  • [24] El-Ganiny, M. Y., Khalaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. Hybrid PAPR reduction schemes for different OFDM-based VLC systems. Opto-Electron. Rev. 30, e141951 (2022). https://doi.org/10.24425/opelre.2022.141951
  • [25] Valluri, S. P., Kishore, V. & Vakamulla, V. M. A new selective mapping scheme for visible light systems. IEEE Access 8, 18087-18096 (2020). https://doi.org/10.1109/access.2020.2968344
  • [26] Huang, Y. et al. On Improving the Accuracy of Visible Light Positioning System with SLM-Based PAPR Reduction Schemes. in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) 1-5 (2020). https://doi.org/10.1109/bmsb49480.2020.9379574
  • [27] Bera, K., Bakaul, M. & Karmakar, N. A Semi-Deterministic Approach for Clipping Noise Mitigation in DCO-OFDM Systems. in 25th Asia-Pacific Conference on Communications (APCC) 122-125 (2019). https://doi.org/10.1109/apcc47188.2019.9026520
  • [28] Gao, Y.-L., Wu, Z.-Y., Wang, Z.-K. & Wang, J. A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation. IEEE Photon. Technol. Lett. 30, 1447-1450 (2018). https://doi.org/10.1109/lpt.2018.2852662
  • [29] Salama, G. M. et al. PAPR reduction technique for FBMC based visible light communication systems. IET Commun. 16, 1807-1814 (2022). https://doi.org/10.1049/cmu2.12430
  • [30] Abdalla, H. F., Hassan, E. S., Dessouky, M. I. & Elsafrawey, A. Three-layer PAPR reduction technique for FBMC based VLC systems. IEEE Access 9, 102908-102916 (2021). https://doi.org/10.1109/access.2021.3098776
  • [31] Li, Y., Qiu, H., Chen, X. & Fu, J. A novel PAPR reduction algorithm for DCO-OFDM/OQAM system in underwater VLC. Opt. Commun. 463, 125449 (2020). https://doi.org/10.1016/j.optcom.2020.125449
  • [32] Freag, H., Hassan, E. S., El-Dolil, S. A. & Dessouky, M. I. New hybrid PAPR reduction techniques for OFDM-based visible light communication systems. J. Opt. Commun. Netw. 39, 427-435 (2018). https://doi.org/10.1515/joc-2017-0002
  • [33] Na, D. & Choi, K. DFT spreading-based low PAPR FBMC with embedded side information. IEEE Trans. Commun. 68, 1731-1745 (2020). https://doi.org/10.1109/tcomm.2019.2918526
  • [34] Na, D. & Choi, K. Low PAPR FBMC. IEEE Trans. Wirel. Commun. 17, 182-193 (2018). https://doi.org/10.1109/twc.2017.2764028
  • [35] Qasim, A. A., Mohammedali, H. N., Abdullah, M. F. L., Talib, R. & Dhaam, H. Z. Enhanced Flip-FBMC visible light communication model. Indones. J. Electr. Eng. Comput. Sci. 23, 1783-1793 (2021). https://doi.org/10.11591/ijeecs.v23.i3.pp1783-1793
  • [36] Li, X. et al. A Hybrid TSLM and $A$-Law Companding Scheme for PAPR Reduction in FBMC-OQAM Systems. in 2020 International Wireless Communications and Mobile Computing (WCMC) 1077-1081 (2020). https://doi.org/10.1109/iwcmc48107.2020.9148283
  • [37] Kollar, Z. & Al-Amaireh, H. FBMC transmitters with reduced complexity. Radioengineering 27, 1147-1154 (2018). https://doi.org/10.13164/re.2018.1147
  • [38] Mounir, M., El_Mashade, M. B., Berra, S., Gaba, G. S. & Masud, M. A novel hybrid precoding-companding technique for peak-to-average power ratio reduction in 5G and beyond. Sensors 21, 1410 (2021). https://doi.org/10.3390/s21041410
  • [39] Perera, S. M. & Liu, J. Complexity reduction, self/completely recursive, radix-2 DCT I/IV algorithms J. Comput. Appl. Math. 379, 112936 (2020). https://doi.org/10.1016/j.cam.2020.112936
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cb0ce65-7cd0-442d-801c-13f323f2a432
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.