PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New trends in clinical and retrospective dosimetry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selecting the proper dosimeter and methodology is crucial for accurate dose measurement, especially since the requirements are different for clinical and retrospective dosimetry. Regardless of the field-radiotherapy, X-ray diagnostic radiology or nuclear medicineefforts are continuously being made to improve radiation measurement accuracy through the development of new dosimeters, accurate calibration of instrumentation, training of staff, proper quality control and enhancement of radiation safety procedures. For instance, for retrospective dose estimation during radiation accidents, the selection of the appropriate material and knowledge of the intrinsic background signal of the selected material are crucial. In both clinical and retrospective dosimetry it is important to have adequate protocols as well as expertise in possible uncertainties, discussed here based on the authors own research.
Rocznik
Strony
69--73
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • AGH University of Krakow, Faculty of Physics and Applied Computer Sciences, Krakow, Poland
  • AGH University of Krakow, Faculty of Physics and Applied Computer Sciences, Krakow, Poland
Bibliografia
  • 1. Attribution of Radiation Health Effects and Inference of Radiation Risks: Considerations for Application of the IAEA Safety Standards. International Atomic Energy Agency, Vienna 2023.
  • 2. Patient Radiation Exposure Monitoring in Medical Imaging. International Atomic Energy Agency; Vienna 2023.
  • 3. Martin CJ, Sutton DG, Sharp PF. Balancing patient dose and image quality. Appl. Radiat. Isot. 1999;50:1-19.
  • 4. Harrison J. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters. J. Radiol. Prot. 2009;29:A81-A105.
  • 5. Chen CY, Chang PJ, Changlai SP, Pan LK. Effective half-life of iodine for five thyroidectomy patients using an in vivo gamma camera approach. J. Radiat. Res. 2007;48:485-93.
  • 6. Giussani A. A recycling systemic model for the biokinetics of molybdenum radionuclides. Sci. Total Environ. 2008;404:44-55.
  • 7. Neira S, Guiu-Souto J, Díaz-Botana P, Pais P, Fernández C, Pubul V, et al. Quantification of internal dosimetry in PET patients: individualized Monte Carlo vs generic phantom-based calculations. Med. Phys. 2020;47:4574-88.
  • 8. Wrzesien M, Napolska K. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique. J. Radiol. Prot. 2015;35:197-207.
  • 9. Łepkowska J, Jung A. Influence of readout conditions on the thermoluminescence properties of mobile phone display glass for retrospective dosimetry. Meas 2022;204:112083.
  • 10. Fattibene P, Trompier F, Bassinet C, Ciesielski B, Discher M, Eakins J, et al. Reflections on the future developments of research in retrospective physical dosimetry. Phys. Open 2023;14:100132.
  • 11. Del Guerra A, Bardies M, Belcari N, Caruana CJ, Christofides S, Erba P, et al.: Curriculum for education and training of Medical Physicists in Nuclear Medicine: Recommendations from the EANM Physics Committee, the EANM Dosimetry Committee and EFOMP. Phys. Med. 2013;29:139-62.
  • 12. mdanderson.org [Internet]. Curriculum [cited 2023 Nov 13]. Available from: https://www.mdanderson.org/education-training/degree-granting-schools/school-of-health-professions/academics/medical-dosimetry/curriculum.html.
  • 13. Jackson P, McIntosh L, Hofman MS, Kong G, Hicks RJ. Technical Note: Rapid multiexponential curve fitting algorithm for voxel-based targeted radionuclide dosimetry. Med. Phys. 2020;47:4332-9.
  • 14. Kessara A, Buyukcizmeci N, Gedik GK. Estimation of patient organ and whole-body doses in [18F-FDG] PET/CT scan. Radiat. Prot. Dosimetry 2022;199:61-8.
  • 15. Hu P, Lin X, Zhuo W, Tan H, Xie T, Liu G, et al. Internal dosimetry in F-18 FDG PET examinations based on long-time-measured organ activities using total-body PET/CT: does it make any difference from a short-time measurement? EJNMMI Phys. 2021;8:51.
  • 16. Moskal P, Stępień E. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 2020;15:439-52.
  • 17. Ng QK, Triumbari EKA, Omidvari N, Cherry SR, Badawi RD, Nardo L. Total-body PET/CT – First Clinical Experiences and Future Perspectives. Semin. Nucl. Med. 2022;52:330-9.
  • 18. Kamp A, Andersson M, Leide-Svegborn S, Noβke D, Mattsson S, Giussani A. A revised compartmental model for biokinetics and dosimetry of 2-[(18)F]FDG. EJNMMI Phys. 2023;10:10.
  • 19. González PR, Mendoza-Anaya D, Ávila O, Escobar-Alarcón L. Synthesis, characterization and thermoluminescence properties of MgB(4)O(7) phosphor co-doped with Tm and Dy. Appl. Radiat. Isot. 2023;200:110975.
  • 20. Yukihara EG, Bos AJJ, Bilski P, McKeever SWS. The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls. Radiat. Meas. 2022;158:106846.
  • 21. Wrzesniak P, Yoshimura EM, Cruz MT, Okuno E. Brazilian Fluorite-Based Dosimetric Pellets: History and Post-Use Review. Radiat. Prot. Dosimetry 1990;34:167-70.
  • 22. Umisedo NK, Okuno E, Cancio F, Yoshimura EM, Künzel R. Development of a mechanically resistant fluorite-based pellet to be used in personal dosimetry. Radiat. Meas. 2020;134:106330.
  • 23. Okuno E, Owaki S, Yamamoto T, Chubaci JFD, Inabe K, Fukuda Y. Thermoluminescence, Thermally Stimulated Exoelectron Emission and Emission Spectra of (CaF2:Natural + NaCI) Pellets. Radiat. Prot. Dosimetry, 1993;47:99-102.
  • 24. Malthez ALMC, Marczewska B, Ferreira F, Umisedo NK, Nowak T, Bilski P, et al. OSL dosimetric properties and efficiency of Brazilian natural calcium fluoride pellets. App. Radiat. Isot. 2018;135:166-70.
  • 25. Guidelli EJ, Baffa O, Clarke DR. Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence. Sci. Rep. 2015;5:14004.
  • 26. Reway AP, Umisedo NK, Yoshimurab EM, Leandro Mariano L, Bezerra Jr A, Malthez ALMC. OSL efficiency of CaF2 detectors based on Brazilian natural fluorite with the addition of metallic nanoparticles. SSRN 2021;1-18.
  • 27. Schreiner LJ. True 3D chemical dosimetry (gels, plastics): Development and clinical role. J. of Physics: Conference Series 2015;573:012003.
  • 28. Potetnya VI, Koryakina EV, Troshina MV, Koryakin SN. Use of the chemical Fricke dosimeter and its modifications for dosimetry of gamma neutron radiation of a pulsed reactor. Nucl. Eng. Technol. 2021;7:231-7.
  • 29. Gao Y, Liu R, Chang C-W, Charyyev S, Zhou J, Bradley JD, et al. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J. Appl. Clin. Med. Phys. 2022;23:e13790.
  • 30. Montay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond JF, Petit B, et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother. Oncol. 2017;124:365-9.
  • 31. Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Med. Phys. 2022;49:4912-32.
  • 32. Christensen JB, Togno M, Nesteruk KP, Psoroulas S, Meer D, Weber DC, et al. Al2O3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Phys. Med. Biol. 2021;66.
  • 33. Ashraf MR, Rahman M, Zhang RX, Williams BB, Gladstone DJ, Pogue BW, Bruza P. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. Front. Phys. 2020;8:1-25.
  • 34. Bassinet C, Discher M, Ristic Y, Woda C. Mobile phone screen protector glass: A TL investigation of the intrinsic background signal. Front. Public Health 2022;10:969330.
  • 35. Discher M, Woda C. Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry. Radiat. Meas. 2013;53-54:12-21.
  • 36. Discher M, Woda C, Ekendahl D, Rojas-Palma C, Steinhäusler F. Evaluation of physical retrospective dosimetry methods in a realistic accident scenario: Results of a field test. Radiat. Meas. 2021;142:106544.
  • 37. Kadam S, Menon SN, Singh AK, Dhabekar B. Luminescence studies in touch screen protective glass of mobile phones for its possible application as retrospective dosimeter. J. Lumin. 2022;252:119266.
  • 38. Matusiak K, Patora A, Jung A. The influence of pre- and post- irradiation annealing on LiF:Mg,Cu,P stability. Radiat. Prot. Dosimetry 2016;171:346-50.
  • 39. Jung A, Matusiak K. The impact of accidental immersion in selected liquids on the sensitivity and repeatability of MCP-N thermoluminescent detectors. Radiat. Meas. 2021;141:106525.
  • 40. Matusiak K, Wolna J, Jung A, Sadowski L, Pawlus J. Impact of the Frequency and Type of Procedures Performed in Nuclear Medicine Units on the Expected Radiological Hazard. Int. J. Environ. Res. Public Health 2023;20;5206.
  • 41. Matusiak K, Patora A, Jung A. Comparison of MCP-Ns and MCP-N detectors usefulness for beta rays detection. Radiat. Meas. 2017;102:10-5.
  • 42. Jung A, Wasilewska-Radwanska M, Kopanski Z. Semiempirical model for diagnostication Helicobacter pylori infection by use of C-14 labelled urea. Nukleonika 2002;47(3):95-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9caf03f5-8231-4271-b124-f346a7be82e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.