PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Nanofillers on the Mechanical Properties of Vinyl Ester Resin Used as a Carbon Fiber Reinforced Polymer Matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of research aimed at determining the influence of selected nanofillers of vinyl ester resin on the mechanical properties of the cured resin. The influence of the resin with nanofillers as a matrix on the properties of the unidirectional CFRP composite was also investigated. Graphite, silicon oxide and titanium dioxide nanopowders were used as resin nanofillers. Each of the fillers was considered in two different contents, i.e. 1 wt.% and 2 wt.%. The variants with such nanofillers content were compared with the unfilled reference variant. The uniaxial tensile strength tests of the resin samples were carried out, showing the possibility of increasing the strength by 19.35% for the variant 1 wt.% of silica nanopowder content. For CFRP composites, the possibility of increasing the strength in the three-point bending test by 25.57% due to the use of a matrix reinforced with graphite nanopowder with a content of 1 wt.% was demonstrated. Based on the analysis of fracture surfaces performed using SEM microscopy, it was shown that the fillers used lead to a significant improvement in the adhesion of the matrix to the composite fibers.
Twórcy
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Mechanics and Machine Building, Carpatian State School in Krosno, ul. Zwirki i Wigury 9A, 38-400 Krosno, Poland
  • Zakłady Mechaniczne Tarnów S.A., ul. Kochanowskiego 30, 33-100 Tarnów, Poland
Bibliografia
  • 1. Yang T., Lu S., Song D., Zhu X., Almira I., Liu J., Zhu Y. Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions. Materials. 2021; 14(7810): 1–17.
  • 2. Ge T., Zhao W., Wu X., Lan X., Zhang Y., Qiang Y., He Y. Incorporation of electroconductive carbon fibers to achieve enhanced anti-corrosion performance of zinc rich coatings, J. Colloid. Interf. Sci. 2020; 567: 113–125.
  • 3. Zare Y., Rhee K.Y. Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time, Compos. Part B Eng. 2019; 156: 100–107.
  • 4. He M., Xu P., Zhang Y., Liu K., Yang X. Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance. Chem. Eng. J. 2020; 388: 124255.
  • 5. Ashrafi M., Hamadanian M., Ghasemi A.R., Kashi F.J. Improvement mechanical and antibacterial properties of epoxy by polyethylene glycol and Ag/CuO nanoparticles. Polym. Compos. 2019; 40: 3393–3401.
  • 6. Heng Z., Chen Y., Zou, H., Liang M. Simultaneously enhanced tensile strength and fracture toughness of epoxy resins by a poly(ethylene oxide)-block-carboxyl terminated butadiene-acrylonitrile rubber dilock copolymer. RSC Adv. 2015; 5: 42362–42368.
  • 7. Flick E.W. Epoxy Resins, Curing Agents, Compounds, and Modifiers: An Industrial Guide; William Andrew: Norwich, NY, USA, 2012.
  • 8. Shen X.J., Pei X.Q., Liu Y., Fu S.Y. Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos. Part B Eng. 2014; 57: 120–125.
  • 9. Jiang T., Kuila T., Kim N.H., Ku B.C., Lee J.H. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos. Sci. Technol. 2013; 79: 115–125.
  • 10. Deng S.H., Zhou X.D., Zhu M.Q., Fan C.J., Lin Q.F. Interfacial toughening and consequent improvement in fracture toughness of carbon fiber reinforced epoxy resin composites: Induced by diblock copolymers. Exp. Polym. Lett. 2013; 7: 925–935.
  • 11. Sharma M., Gao S., Mader E., Sharma H., Wei L.Y., Bijwe J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014; 102: 35–50.
  • 12. Jin Z., Zhang Z., Meng L. Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Mater. Chem. Phys. 2006; 97: 167–72.
  • 13. Han S., Lin J.T., Yamada Y., Chung D.D.L. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer-matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon N.Y. 2008; 46: 1060–1071.
  • 14. Kim M.T., Rhee K.Y., Lee J.H., Hui D., Lau A.K.T. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B. Eng. 2011; 42: 1257–1261.
  • 15. Pathak A.K., Borah M., Gupta A., Yokozeki T., Dhakate S.R. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos. Sci. Technol. 2016; 135: 28–38.
  • 16. Qin W., Vautard F., Drzal L.T., Yu J. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase. Compos. B. Eng. 2015; 69: 335–341.
  • 17. Sharma M., Gao S., Mader E., Sharma H., Wei L.Y., Bijwe J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014; 102: 35–50.
  • 18. Jin Z., Zhang Z., Meng L. Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Mater. Chem. Phys. 2006; 97: 167–72.
  • 19. Karger-Kocsis J., Mahmood H., Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 2015; 73: 1–43.
  • 20. Yue C.Y., Tang X.Z., Jiang Z., Yang J., Yu B. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Compos. Sci. Technol. 2014; 99: 131–40.
  • 21. Bilotti E., Li Y., Huang Z., Zhang H., Wang H., Peijs T., et al. Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. Compos. Part A Appl. Sci. Manuf. 2017; 105: 9–18.
  • 22. Xiao L., Ao Y., Zhang M., Liu L., Fu J., Li M. Layer-by-Layer electrostatic self-assembly silica/graphene oxide onto carbon fiber surface for enhance interfacial strength of epoxy composites. Mater. Lett. 2018; 236: 69–72.
  • 23. Prusty R.K., Rathore D.K., Ray B.C. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. J. Appl. Polym. Sci. 2018; 135: 45987.
  • 24. Bakis G., Wendel J.F., Zeiler R., Aksit A., Häublein M., Demleitner M., Benra J., Forero S., Schütz W., Altstädt V. Mechanical properties of the carbon nanotube modified epoxy-carbon fiber unidirectional prepreg laminates. Polymers. 2021; 13, 770.
  • 25. Moon J.B., Kim M.G., Kim C.G., Bhowmik S. Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply. Compos. Part A. 2011; 42: 694–701.
  • 26. Firdosh S., Murthy H.N.N., Pal R., Angadi G., Raghavendra N., Krishna M. Durability of GFRP nanocomposites subjected to hygrothermal ageing. Compos. Part B. 2015; 69: 443–451.
  • 27. Jeyakumar R., Sampath P.S., Ramamoorthi R., Ramakrishnan T. Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int. J. Adv. Manuf. Technol. 2017; 93: 527–535.
  • 28. Shettar M., Kini U.A., Sharma S., Hiremath P., Gowrishankar M.C. Hygrothermal chamber aging effect on mechanical behawior and morphology of glass fiber-epoxy-nanoclay composites. Mater. Res. Exp. 2020; 7: 015318.
  • 29. Rodriguez-Gonzalez J.A., Rubio-Gonzalez C., Ku-Herrera J.D., Ramos-Galicia L., Velasco-Santos C. Effect of seawater ageing on interlaminar fracture toughness of carbon fiber/epoxy composites containing carbon nanofillers. J. Reinf. Plast. Compos. 2018; 1: 1346–1359.
  • 30. Kattaguri R., Fulmali A.O., Prusty R.K., Ray B.C. Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. J. Appl. Polym. Sci. 2020; 12: 48434.
  • 31. Ibrahim M.H.I., Hassan M.Z., Ibrahim I., Rashidi A.H.M., Nor S.F.M., Daud, M.Y.M. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites. AIP Conf. Proc. 2018; 1958: 020006.
  • 32. PN-EN ISO 527-3:2019-01, Plastics - Determination of tensile properties - Part 3: Test conditions for films and plates. Published date: 01-19-2019, Publisher: Polish Committee for Standardization.
  • 33. ASTM D2344/D2344M-16 (2016) Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cabf0c2-502c-42ed-b3b3-0b4fd0868319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.