PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Impact Toughness of Offshore Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focused on the effects of microstructures on the low-temperature impact toughness of directly water-quenched offshore steel. Martensite dominated the microstructure directly below the quenched surface. In contrast, mainly lower bainite, martensite, and low amount of ferrite were observed in the central region of the quenched specimen. The ductile to brittle transition temperature of tempered martensite was significantly lower than that of a bainite-dominated microstructure. It is found that low-angle boundaries within the bainite packets greatly impair the low-temperature impact toughness of the steel. The absence of high-angle boundaries in the lower bainite packets significantly deteriorates the low-temperature impact energy of offshore steel.
Twórcy
autor
  • National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
  • National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
  • China Steel Corporation, Hsiao Kang, Kaohsiung 812, Taiwan
autor
  • China Steel Corporation, Hsiao Kang, Kaohsiung 812, Taiwan
autor
  • National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
  • National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
Bibliografia
  • [1] G. Tither, Z. Shouhua (Eds.), HSLA Steels, Processing, Properties and Applications, 1992 The Minerals, Metals & Materials Society, Warrendale.
  • [2] T. Gladman, The Physical Metallurgy of Microalloyed Steels, 1997 Institute of Metals, London.
  • [3] T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu, R. K. Shiue, Adv. Mater. Res. 936, 1312-1316 (2014).
  • [4] M. Kapsali, J. K. Kaldellis, Offshore Wind Power Basics, 2012 Technological Education Institute of Piraeus, Athens.
  • [5] T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin, R. K. Shiue, Mater. Res. Innov. 19 (Suppl. 9), 69-72 (2015).
  • [6] G. Heigl, H. Lengauer, P. Hodnik, Steel Res. Intl. 79 (12), 931-937 (2008).
  • [7] Norsok Standard, Material Data Sheets for Structural Steel, Rev. 3, 2000, Norway Technology Center, Oslo, Norway.
  • [8] T. Hanamura, F. Yin, K. Nagai, ISIJ Inter. 44 (3), 610-617 (2004).
  • [9] N. Isasti, D. Jorge-Badiola, M. L. Taheri, P. Uranga, Metall. Mater. Trans. 45A, 4972-4982 (2014).
  • [10] A. L. Wojcieszynski, W. M. Garrison, A. W. Thompson, Scripta Metall. Mater. 27, 851-854 (1992).
  • [11] H. Halfa, J. Mine. Mater. Charac. Eng. 2, 428-469 (2014).
  • [12] Y. M. Kim, S. K. Kim, Y. J. Lim, N. J. Kim, ISIJ Inter. 42, 1571-1577 (2002).
  • [13] X. Wu, H. Lee, Y. M. Kim, N. J. Kim, J. Mater. Sci. Technol. 28, 889-894 (2012).
  • [14] P. Brziak, M. Lomozik, R. Mizuno, F. Matsuda, Archiv. Metall. Mater. 56 (2), 205-216 (2011).
  • [15] H. Q Yan, K. M. Wu, H. M. Wang, L. Li, Y. Q. Yin, N. C. Wu, Sci. Tech. Weld. Joi. 19 (4), 355-360 (2014).
  • [16] I. Dzioba, I. Kasinska, R. Pala, Archiv. Metall. Mater. 60 (2), 773-777 (2015).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9caa87c8-d004-4462-8666-71416175c873
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.