Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This study focused on the effects of microstructures on the low-temperature impact toughness of directly water-quenched offshore steel. Martensite dominated the microstructure directly below the quenched surface. In contrast, mainly lower bainite, martensite, and low amount of ferrite were observed in the central region of the quenched specimen. The ductile to brittle transition temperature of tempered martensite was significantly lower than that of a bainite-dominated microstructure. It is found that low-angle boundaries within the bainite packets greatly impair the low-temperature impact toughness of the steel. The absence of high-angle boundaries in the lower bainite packets significantly deteriorates the low-temperature impact energy of offshore steel.
Wydawca
Czasopismo
Rocznik
Tom
Strony
167--172
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
- National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
- China Steel Corporation, Hsiao Kang, Kaohsiung 812, Taiwan
autor
- China Steel Corporation, Hsiao Kang, Kaohsiung 812, Taiwan
autor
- National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
autor
- National Taiwan University, Department of Materials Science and Engineering, Taipei 106, Taiwan
Bibliografia
- [1] G. Tither, Z. Shouhua (Eds.), HSLA Steels, Processing, Properties and Applications, 1992 The Minerals, Metals & Materials Society, Warrendale.
- [2] T. Gladman, The Physical Metallurgy of Microalloyed Steels, 1997 Institute of Metals, London.
- [3] T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu, R. K. Shiue, Adv. Mater. Res. 936, 1312-1316 (2014).
- [4] M. Kapsali, J. K. Kaldellis, Offshore Wind Power Basics, 2012 Technological Education Institute of Piraeus, Athens.
- [5] T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin, R. K. Shiue, Mater. Res. Innov. 19 (Suppl. 9), 69-72 (2015).
- [6] G. Heigl, H. Lengauer, P. Hodnik, Steel Res. Intl. 79 (12), 931-937 (2008).
- [7] Norsok Standard, Material Data Sheets for Structural Steel, Rev. 3, 2000, Norway Technology Center, Oslo, Norway.
- [8] T. Hanamura, F. Yin, K. Nagai, ISIJ Inter. 44 (3), 610-617 (2004).
- [9] N. Isasti, D. Jorge-Badiola, M. L. Taheri, P. Uranga, Metall. Mater. Trans. 45A, 4972-4982 (2014).
- [10] A. L. Wojcieszynski, W. M. Garrison, A. W. Thompson, Scripta Metall. Mater. 27, 851-854 (1992).
- [11] H. Halfa, J. Mine. Mater. Charac. Eng. 2, 428-469 (2014).
- [12] Y. M. Kim, S. K. Kim, Y. J. Lim, N. J. Kim, ISIJ Inter. 42, 1571-1577 (2002).
- [13] X. Wu, H. Lee, Y. M. Kim, N. J. Kim, J. Mater. Sci. Technol. 28, 889-894 (2012).
- [14] P. Brziak, M. Lomozik, R. Mizuno, F. Matsuda, Archiv. Metall. Mater. 56 (2), 205-216 (2011).
- [15] H. Q Yan, K. M. Wu, H. M. Wang, L. Li, Y. Q. Yin, N. C. Wu, Sci. Tech. Weld. Joi. 19 (4), 355-360 (2014).
- [16] I. Dzioba, I. Kasinska, R. Pala, Archiv. Metall. Mater. 60 (2), 773-777 (2015).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9caa87c8-d004-4462-8666-71416175c873