Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
These studies were carried out within the framework of the European FuelSOME Project (No. 101069828), which focuses on establishing a multi-fuel energy generation system based on utilization of Solid Oxide Fuel Cells (SOFC) and is dedicated mainly to the long-distance maritime shipping. For the SOFC stacks, the removal of sulphur contaminations from fuels is crucial as the content of sulphur compounds is strictly limited, even to dozens of mol ppb. The modelling and calculations were performed for a selected testing system of deep adsorptive purification of methanol to remove dibenzothiophene (DBT) on activated carbon (AC), where DBT was taken as a representative of compounds contaminating sulphur. An appropriate model of the adsorption column packed with activated carbon pellets was elaborated as a basis for process simulations and further techno-economic considerations. The research focused on modelling sulphur removal to achieve the required purity of methanol, then on cost analysis to optimize the proposed purification process. At the current stage, the aim of the performed studies was a preliminary check of a possibility of successfully performing deep adsorptive desulphurisation of methanol and an estimation of purification costs.
Rocznik
Tom
Strony
art. no. e72
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Chemical and Process Engineering Department, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Chemical and Process Engineering Department, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Chemical and Process Engineering Department, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Chemical and Process Engineering Department, Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
- 1. Araya S.S., Liso V., Cui X., Li N., Zhu J., Sahlin S.L., Jensen S.H., Nielsen M.P., Kær S.K., 2020. A review of the methanol economy: the fuel cell route. Energies, 13, 596, 1–32. DOI: 10.3390/en13030596.
- 2. Biotage, 2023. Does methanol really dissolve silica during flash column chromatography? Available at: https://www.biotage.com/blog/does-methanol-really-dissolve-silica-during-flash-column-chromatography.
- 3. Carbonell R.G., McCoy B.J., 1975. Moment theory of chromatographic separation: resolution and optimization. Chem. Eng. J., 9, 115–124. DOI: 10.1016/0300-9467(75)80003-7.
- 4. Chung S.F., Wen C.Y., 1968. Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J., 14, 857–866. DOI: 10.1002/aic.690140608.
- 5. Constantino D.S.M., Pereira C.S.M, Faria R.P.V., Loureiro J.M., Rodrigues A.E., 2015. Simulated moving bed reactor for butyl acrylate synthesis: from pilot to industrial scale. Chem. Eng. Process. Process Intensif., 97, 153–168. DOI: 10.1016/j.cep.2015.08.003.
- 6. Elcogen, 2020. Installation and operation manual of elcoStackr E3000 Version: 1.3.
- 7. European Commission, Directorate-General for Climate Action, 2019. Study on methods and considerations for the determination of greenhouse gas emission reduction targets for international shipping – Final report – Technology pathways. Publications Office. DOI: 10.2834/651129.
- 8. Fiedler E., Grossmann G., Kersebohm D. B., Weiss G., Witte, C., 2002. Methanol. Ullmann’s encyclopedia of industrial chemistry. Wiley–VCH Verlag/GmbH & Co. DOI: 10.1002/14356007.
- 9. FuelSOME, 2022. Multifuel SOFC system with Maritime Energy vectors. EU Project number 101069828, HORIZON-CL5-2021-D2-01, https://fuelsome.eu/.
- 10. Gil I.D., Botía D.C., Ortiz P., Sánchez O.F., 2009. Extractive distillation of acetone/methanol mixture using water as entrainer. Ind. Eng. Chem. Res., 48, 4558–4865. DOI: 10.1021/ie801637h.
- 11. Glueckauf E., 1955. Theory of cheromatography. Part 10.– Formulæ for diffusion into sheres and their application to chromathography. Trans. Faraday Soc., 51, 1540–1551. DOI: 10.1039/TF9555101540.
- 12. Graczová E., Vavrušová M., 2018. Extractive distillation of acetone – methanol mixture using 1-ethyl-3-methylimidazolium trifluoromethanessulfonate. Chem. Eng. Trans., 70, 1190–1194. DOI: 10.3303/CET1870199.
- 13. IMPCA, 2021. IMPCA methanol reference specifications. Available at: https://impca.eu/resources/impca-reference-specifications/.
- 14. Lee S.H.D., Kumar R., Krumpelt M., 2002. Sulfur removal from diesel fuel-contaminated methanol. Sep. Purif. Technol., 26, 247–258. DOI: 10.1016/S1383-5866(01)00174-5.
- 15. Luis P., Amelio A., Vreysen S., Calabro V., van der Bruggen B., 2014. Simulation and environmental evaluation of process design: distillation vs. hybrid distillation–pervaporation for methanol/tetrahydrofuran separation. Appl. Energy, 113, 565–575. DOI: 10.1016/j.apenergy.2013.06.040.
- 16. Marcus, Y. and Glinberg S., 1985. Recommended methods for the purification of solvents and tests for impurities: methanol and ethanol. Pure Appl. Chem., 57, 855–864. DOI: https://doi.org/10.1351/pac198557060855.
- 17. Moioli S., Pellegrini L.A., 2021. Study of alternative configurations for methanol purification. Comput. Aided Chem. Eng., 50, 267– 272. DOI: 10.1016/B978-0-323-88506-5.50043-7.
- 18. Molga E., 2009. Procesy adsorpcji reaktywnej (Reactive adsorp- tion processes) (in Polish), WNT, Warszawa, 90–200.
- 19. Molga E., Chwojnowski K., Cherbański R., Stankiewicz A., 2024. Optimization of deep adsorptive purification of methanol for fuel cells – use of expert system based on neural networks application. Book of Abstracts. XII Polish Scientific Conference, Chemical and Process Engineering for Environment and Medicine, Sarbinowo, 11–14.09.2024.
- 20. Montevecchi G., Cannio M., Cancelli U., Antonelli A., Romagnoli M., 2024. Evaluation of distillery fractions in direct methanol fuel cells and screening of reaction products. Clean Technol., 6, 513–527. DOI: 10.3390/cleantechnol6020027.
- 21. Pinto A., 1980. Methanol distillation process. US Patent US4210495A.
- 22. Poole C.F., 2003. New trends in solid-phase extraction. TrAC, Trends Anal. Chem., 22, 362–373. DOI: 10.1016/S0165-9936(03)00605-8.
- 23. Rocha L.B., Gimenes M.L., Faria S H.B., Jiménez L., Cavali T., 2017. Design of a new sustainable methanol plant coupled to an ethanol distillery. Comput. Aided Chem. Eng., 40, 805–810. DOI: 10.1016/B978-0-444-63965-3.50136-7.
- 24. Saha B., Vedachalam S., Dalai A.K, 2021. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol., 214, 106685, 1–21. DOI: 10.1016/j.fuproc.2020.106685.
- 25. Santacesaria E., Morbidelli M., Servida A., Storti G., Carra S., 1982. Separation of xylenes on Y zeolites. 2. Breakthrough curves and their interpretation. Ind. Eng. Chem. Process Des. Dev., 21, 446–451. DOI: 10.1021/i200018a017.
- 26. Schneider P., Smith J.M., 1968. Adsorption rate constants from chromatography. AlChE J., 14, 762–771. DOI: 10.1002/aic.690140516.
- 27. Sherwood T.K., Pigford R.L., Wilke R.L, 1975. Mass Transfer. McGraw-Hill, NY, 242.
- 28. Silva V.M.T.M., Pereira C.S.M., Rodrigues A.E., 2011. PermSMBR—a new hybrid technology: application on green solvent and biofuel production. AIChE J., 57, 1840–1851. DOI: 10.1002/aic.12381.
- 29. Spingern N.E., Garvie-Gould C.T., Vuolo L.L., 1981. Analysis of methanol for reversed-phase gradient elution liquid chromatography. Anal. Chem, 53, 565–566. DOI: 10.1021/ac00226a052.
- 30. Villegas M., Vidaurre E.F.C., Gottifredi J.C., 2015. Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes. Chem. Eng. Res. Des., 94, 254– 265. DOI: 10.1016/j.cherd.2014.07.030.
- 31. Wen J., Han X., Lin H., Zheng Y., Chu W., 2010. A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: equilibrium, kinetics and thermodynamics. Chem. Eng. J., 164, 29–36. DOI: 10.1016/j.cej.2010.07.068.
- 32. Zhang J., Liang S., Feng X., 2010. A novel multi-effect methanol distillation process. Chem. Eng. Process. Process Intensif., 49, 1031–1037. DOI: 10.1016/j.cep.2010.07.003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ca885b4-12f3-4415-b879-861b5fdd44a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.