PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toxicity of Sewage from Industrial Wastewater Tratment Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to evaluate the ecotoxicity of the waste water from chosen sewage treatment plants. Microtox M500 and Aliivibrio fischeri luminescent bacteria were used for the assessment of toxicity as well as acute tests using aquatic organisms: Daphnia magna crustacea and Chironomus tentans larvae. The performed ecotoxicological tests showed different ranges of sensitivity of living organisms when it comes to the individual types of industrial sewage. The Aliivibrio fischeri bacteria turned out to be the most sensitive bioindicator. In addition, the inclusion of toxicity tests in a wastewater management system in industrial plants will allow the elimination of toxic sewage disposal into the surface water and soil.
Słowa kluczowe
Rocznik
Strony
191--199
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45 E, 15-351 Bialystok, Poland
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45 E, 15-351 Bialystok, Poland
Bibliografia
  • 1. Bartkiewicz B., Umiejewska K. 2010. Purification of industrial wastewater, Scientific Publisher PWN, Warsaw. (in Polish)
  • 2. Bilińska L., Bemska J., Biliński K., Ledakowicz S. 2012. Integrated chemical-biological treatment plant of textile sewage, Engineering and chemical apparatus, No 4, 95–97. (in Polish)
  • 3. Butarewicz A. 2013. Monitoring of municipal wastewater treatment plant using the Microtox set, Economics and Environment, No 4 (47), 187–198. (in Polish)
  • 4. Greluk M., 2013. Use of ion exchangers, ion exchange membranes, polymeric sorbents and biopolymers in removal of acid and reactive dyes from aqueous solutions. Chemical industry, No 4, 469–478.(in Polish)
  • 5. Institute of Precision Mechanics, Best Tech Access (BAT). Guidelines for surface treatment of metals and plastics, Warsaw. 2009. (in Polish)
  • 6. Katsoyiannis A., Samara C. 2007. Ecotoxicological evaluation of the wastewater treatment process of the sewage treatment plant of Thessaloniki, Greece. Journal of Hazardous Materials, 141, 614–621.
  • 7. Majka M. 2007. Cleaning liquids from surface treatment of metals, Recycling. Vol. 82, No 11, 14–15. (in Polish)
  • 8. Starzycka A., Environmental and legal aspects of the management of waste generated during the exploration, identification and extraction of shale gas. Polish Geological Institute – National Research Institute, Poznań 2012. (in Polish)
  • 9. Mantis I., Voutsa D., Samara C. 2005. Assessment of the environmental hazard from municipal and industrial wastewater tratment sludge by employing chemical and biological methods. Ecotoxicology and Environmental Safety. 62, 397–407.
  • 10. Nałęcz-Jawecki G., 2006. Quality assessment of raw sewage. Water supply and sewage. Vol 34, No 12.
  • 11. PN-EN ISO 11348–3:2008 Water quality. Determination of the inhibitory effect of water samples on light emission by Vibrio fischeri (study on luminescent bacteria). Part 3: Method using lyophilized bacteria.
  • 12. Richardson S.D., Kimura S.Y. 2017. Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environmental Technology & Innovation. Vol. 8,40–56.
  • 13. Richardson, S.D., Ternes, T.A. 2011. Water analysis: emerging contaminants and current issues. Anal. Chem. 83, 4614–4648.
  • 14. Richardson, S.D., Ternes, T.A. 2014. Water analysis: emerging contaminants and current issues. Anal. Chem. 86, 2813–2848.
  • 15. Soupilas A., Papadimitriou C.A., Samaras P., Gudulas K., Petridis D. 2008. Monitoring of industrial effluent ecotoxicity in the greater Thessaloniki area. Science Direct, No 224, 261–270.
  • 16. Urbanczyk H., Ast J.C., Higgins M.J., Carson J., Dunlap P.V. 2007. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2823–2829.
  • 17. Verma Y., 2011. Toxicity assessment of dye containing industrial effluents by acute toxcity test using Daphnia magna, Toxicol Ind Health, Vol. 27, No 1., 41–49.
  • 18. Yi X., Kim E., Jo HJ., Han T., Jung J. 2011. A comparative study on toxicity identification of industrial effluents using Daphnia magna, Bull. Environ. Contam Toxicol, 87, No 3, pp. 319–323.
  • 19. Zima G., 2012. The use of bioindication methods to assess the toxicity of chemical agents used in drilling mud compositions, Oil and Gas, No 2, 115–122. (in Polish)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ca86e47-00d0-4b09-ab94-4584390fe0a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.