Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zawartość metali ciężkich w substratach w biogazownich rolniczych
Języki publikacji
Abstrakty
The content of heavy metals in soil should be continuously monitored, especially in organic crops. Exceeding the permissible concentrations of these elements may lead not only to inhibition of plant growth but also to ingestion into the organisms of animals that feed on these plants. Heavy metals usually enter the soil via precipitation or manure. There is a noticeable increase in interest in digestate for fields fertilization. Therefore, the authors decided to test the heavy metal content in substrates (slurry and solid input) and digestate. The 15x3 samples tested showed that only trace amounts of heavy metals were present. The study shows that the content of these elements in the digestate is not the sum of the elements supplied to the digester with the substrates. In most of the samples tested, lead concentrations did not exceed 5 mg‧kg-1. The lowest amounts of cadmium (an average of 0.28 mg‧kg-1) were observed in the slurry, and the highest (an average of 0.34 mg‧kg-1) in the solid substrate fed to the digester. Slurry had the lowest mercury and cadmium contents (average 0.012 mg‧kg-1 and 5.8 mg‧kg-1). The highest concentration of chromium was registered in the digestate (average 3 mg‧kg-1) and this was on average 0.3 mg‧kg-1 higher than the feedstock and 0.5 mg‧kg-1 than the slurry.
Zawartość metali ciężkich w glebie powinna być stale monitorowana, szczególnie w przypadku upraw ekologicznych. Przekroczenie dozwolonych stężeń tych pierwiastków może doprowadzić nie tylko do zahamowania wzrostu roślin, ale także do wchłonięcia przez organizmy zwierzęce, które się nimi żywią. Metale ciężkie trafiają do gleby zazwyczaj drogą opadów lub nawozu. Widoczny jest wyraźny wzrost zainteresowania pofermentem do nawożenia pól. Zatem, autorzy zdecydowali o zbadaniu zawartość metali ciężkich w substratach (w gnojowicy i odpadach stałych) oraz w pofermencie. Zbadane próbki wykazały wyłącznie śladowe ilości metali ciężkich. Badanie pokazuje, że zawartość tych elementów w pofermencie nie jest sumą pierwiastków dostarczonych do fermentora z substratami. W większości zbadanych próbek, zawartość ołowiu nie przekraczała 5 mg‧kg-1. Najmniejszą ilość kadmu (średnio 0,28 mg‧kg-1) zaobserwowano w gnojowicy a najwyższe (średnio 0,34 mg‧kg-1) w stałym substracie zasilającym fermentor. Gnojowica miała najniższe stężenie rtęci i kadmu (średnio 0,012 mg‧kg-1 oraz 5,8 mg‧kg-1). Najwyższe stężenie chromu zostało zanotowanie w fermentorze (średnio 3 mg‧kg-1) czyli średnio 0,3 mg‧kg-1 wyższe niż surowiec oraz 0,5 mg‧kg-1 niż gnojowica.
Czasopismo
Rocznik
Tom
Strony
315--329
Opis fizyczny
Bibliogr. 59 poz., tab., wykr.
Twórcy
autor
- Department of Agronomy, Modern Technology and Informatics, International Academy of Applied Sciences in Lomza, Poland
autor
- Department of Agronomy, Modern Technology and Informatics, International Academy of Applied Sciences in Lomza, Poland
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Poland
autor
- Department of Agronomy, Modern Technology and Informatics, International Academy of Applied Sciences in Lomza, Poland
autor
- Department of Rural Technical Infrastructure, Institute of Technology and Life Sciences, Branch in Warsaw, Poland
autor
- Faculty of Technical Sciences and Design Arts, National Academy of Applied Sciences in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków
autor
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków
autor
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Poland
Bibliografia
- Abubaker, J., Risberg, K. & Pell, M. (2012). Biogas residues as fertilisers–Effects on wheat growth and soil microbial activities. Applied Energy. 99, 126-134. https://doi.org/10.1016/j.apenergy.2012.04.050.
- Amon, T., Amon B., Kryworuchko, W., Zollitsch, W., Mayer K., Gruber, L. (2007) Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment. 118, 173-182. https://doi.org/10.1016/j.agee.2006.05.007.
- Arvaniti, F., Magkos, F. & Zampelas A. (2006). Organic food: buying more safety or just peace of mind? A critical review of the literature. Critical Reviews in Food Science and Nutrition. 46, 23-56. DOI: 10.1080/10408690490911846.
- Balanda, O., Serafinowska, D., Marchenko, O. & Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering. 26(1), 133-144. https://doi.org/10.2478/agriceng-2022-0011.
- Barwicki, J., Borusiewicz, A., Holden, L., Kulcsar, L., Skibko, Z., Żuchowski, I., & Romaniuk, W. (2022). Leaching of elements from soil in grassland field crops treated with raw and acidified slurry. Agricultural Engineering, 26(1), 145-156.
- Bhunia, S., Bhowmik, A. & Mukherjee, J. (2021). Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: a Review. Agronomy. 11, 823. https://doi.org/10.3390/agronomy11050823.
- Borek, K., Romaniuk, W., Roman, K., Roman, M. & Kuboń, M. (2021). The analysis of a prototype installation for biogas production from chosen agricultural substrates. Energies. 14(8), 2132. https://doi.org/10.3390/en14082132.
- Bosiacki, M., Bednorz, L. & Spiżewski T. (2022). Concentration of heavy metals in urban allotment soils and their uptake by selected vegetable crop species – a case study from Gorzów Wielkopolski, Poland. Journal of Elementology. 27(2), 405-421. DOI: 10.5601/jelem.2022.27.1.2275.
- Campuzano, R. & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management. 54, 3-12. https://doi.org/10.1016/j.wasman.2016.05.016.
- Coelho, J.J., Prieto, M.L., Dowling, S., Hennessy, A., Casey, I., Woodcock, T. & Kennedy, N. (2018). Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Management. 78, 8-15. https://doi.org/10.1016/j.wasman.2018.05.017.
- Crinnion, W. (2010). Organic foods contain higher levels of certain nutrients, lower levels of pesticides and may provide health benefits for the consumer. Environmental Medicine. 15, 4-12., PMID: 20359265.
- Czekała, W., Pulka, J., Jasiński, T., Szewczyk, P., Bojarski, W. & Jasiński J. (2023). Waste as substrates for agricultural biogas plants: A case study from Poland. Journal of Water and Land Development. 56, 45-50. DOI: 10.24425/jwld.2023.143743.
- Czekała, W., Nowak, M., & Bojarski, W. (2023). Anaerobic digestion and composting as methods of bio-waste management. Agricultural Engineering, 27(1), 173-186.
- Dong, H., Gao, Z., Liu, J. & Jiang, B. (2023). Study on the Accumulation of Heavy Metals in Different Soil-Crop Systems and Ecological Risk Assessment: A Case Study of Jiao River Basin. Agronomy. 13(9), 2238. https://doi.org/10.3390/agronomy13092238.
- Dubský, M., Chaloupková, Š., Kaplan, L., Vondráčková, S. & Tlustoš, P. (2019). Use of solid phase of digestate for production of growing horticultural substrates. Horticultural Science. 46, 34-42. DOI: 10.17221/221/2016-HORTSCI.
- FAO. (2018). World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals. Food and Agriculture Organization of the United Nations. Rome, Italy.
- Frigon, J.C., Mehta, P. & Guiot, S.R. (2012). Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy. 36, 1-11. https://doi.org/10.1016/j.biombioe.2011.02.013.
- He, P., Liang, B., Chen, B., Xu, Z. & Jiang, H. (2022). Effectiveness of Cadmium Bioavailability in Paddy Soil and Effective Factors of Cadmium Accumulation in Rice in the High Geological Background of Northeast Chengdu Plain. J. Southwest Univ. Sci. Technol., 37, 38-43, 97. (In Chinese), DOI:10.20036/j.cnki.1671-8755.2022.03.006.
- Hołdyński, G., Skibko, Z. & Borusiewicz, A. (2022). Impact of Wind Power Plant Operation on Voltage Quality Parameters-Example from Poland. Energies, 15, 5573. https://doi.org/10.3390/ en15155573.
- Hoornweg, D. & Bhada-Tata, P. (2012). What a Waste: A Global Review of Solid Waste Management. World Bank: Washington, DC, USA; Retrieved August 6, 2023, from the World Wide Web: http://hdl.handle.net/10986/17388.
- Horobets, O.V. (2020) Classification of agricultural waste and selection of their utilization technology. Waste Management, 4, 225-229. DOI https://doi.org/10.32846/2306-9716/2020.eco.4-31.35.
- Iglesias, R., Muñoz, R., Polanco, M., Díaz, I., Susmozas, A., Moreno, A.D. & Guirado, M. (2021). Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies. 14, 2742. https://doi.org/10.3390/en14102742.
- Issah, A.A., Kabera, T. & Kemausuor, F. (2020). Biogas optimisation processes and effluent quality: A review. Biomass Bioenergy. 133, 105449. https://doi.org/10.1016/j.biombioe.2019.105449.
- Jędrejek, A. & Jarosz, Z. (2016). Regional Opportunities to Produce Agricultural of Bio-Gas. Institute of Soil Science and Plant Cultivation - PIB in Puławy, Scientific Yearbooks of the Association of Agricultural and Agribusiness Economists. Puławy, 18, 61-66.
- Kolář, L., Kužel, S., Peterka, J. & Borová-Batt, J. (2010). Agrochemical value of the liquid phase of wastes from fermentem during biogas production. Plant Soil Environment. 56, 23-27, DOI: 10.17221/180/2009-PSE.
- Kopeć, M. & Gondek, K. (2009). The content of mercury in plans of the mountain grassland (Czarny Potok) after 40 years of veried mineral fertilization. Ecological engineering. No 21, 7-14. Retrieved August 3, 2023, from the World Wide Web: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0koGN9dyBAxVfhv0HHVpcDsQFnoECA4QAQ&url=https%3A%2F%2Fyadda.icm.edu.pl%2Fbaztech%2Felement%2Fbwmeta1.element.baztech-article-BPG8-0064-0030%2Fc%2FKopec.pdf&usg=AOvVaw1YsQr32-xDjVAI5hBrcha_&opi=89978449.
- Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C. & Müller, J. (2010). Applicability of biogas digestate as solid fuel. Fuel. 89, 2544-2548. https://doi.org/10.1016/j.fuel.2010.02.008.
- Kuboń, M. & Krasnodębski, A. (2010). Logistic costs in competitive strategies of enterprises. Agricultural Economics. 56(8), 397-402. https://doi.org/10.17221/67/2010-AGRICECON.
- Kuboń, M., Skibko, Z., Tabor, S., Malaga-Toboła, U., Borusiewicz, A., Romaniuk, W., Zarajczyk, J. & Neuberger, P. (2023). Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation. Energies. 16, 6189. https://doi.org/10.3390/en16176189.
- Kukharets, S., Hutsol, T., Glowacki, S., Sukmaniuk, O., Rozkosz, A. & Tkach, O. (2021). Concept of Biohydrogen Production by Agricultural Enterprises. Agricultural Engineering, 25(1), 63-72. https://doi.org/10.2478/agriceng-2021-0005.
- Łagocka, A., Kamiński, M. & Cholewiński, M. (2016). Biogas fermentation by-products - the utilization as a full-value fertilizer and its impact on the rural areas. II International Conference of the Society for Human Ecology. January 2016. University Publishing House of the West Pomeranian University of Technology in Szczecin, 124-125. Retrieved August 3, 2023, from the World Wide Web: https://www.researchgate.net/publication/314371943_Korzysci_ekologiczne_ze_stosowania_pofermentu_z_biogazowni_rolniczych_jako_nawozu_organicznego.
- Larina, Y., Galchynska, J., Kucheruk, P., Zghurska, O., Ortina, G., Al-Nadzhar, F., Marusei, T., Kuboń, M. & Dzieniszewski, G. (2021). Estimation of the Domestic Agricultural Sector Potential for the Growth of Energy Cultures for Bioenergy Fuel Production. Agricultural Engineering. 25(1) 73-82. https://doi.org/10.2478/agriceng-2021-0006.
- Lijó, L., González-García, S., Bacenetti, J., Negri, M., Fiala, M., Feijoo, G. & Moreira, M.T. (2015). Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste Management. 41, 50-59. https://doi.org/10.1016/j.wasman.2015.03.043.
- Makádi, M., Tomócsik, A. & Orosz, V. (2012). Digestate: A new nutrient source-review. Biogas. 14, 295-312. DOI: 10.5772/31355.
- McEniry, J., Allen, E., Murphy, J. & O'Kiely, P. (2014). Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems. Renewable Energy, 63, 524-530. https://doi.org/10.1016/j.renene.2013.09.052.
- Michalski, T. (2009). Biogas plant in every municipality - is there enough raw material. Wieś Jutra. 3, Poznań. 12-14.
- Niemiec, M., Sikora, J., Szelag-Sikora, A., Kubon, M., Olech, E., & Marczuk, A. (2017). Applicability of food industry organic waste for methane fermentation. Przemysł chemiczny. 96(3), 685-688. https://doi.org/10.15199/62.2017.3.38.
- Ociepa, E., Deska, I. & Mrowiec, M. (2014). Effect of compound fertilizers on the concentration of heavy metals in soil and biomass of virginia mallow. Engineering and Environmental Protection, t. 17, nr 4, s. 647-660.
- Ogbuewu, I.P., Odoemenam, V.U., Obikaonu, H.O., Opara, M.N., Emenalom, O.O., Uchegbu, M.C., Okoli, I.C., Esonu, B.O. & Iloeje, M.U. (2011). The growing importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and environment: A review. Research Journal of Medicinal Plants. 5, 230-245. https://scialert.net/abstract/?doi=rjmp.2011.230.245.
- Romaniuk, W., Mazur, K., Borek, K., Borusiewicz, A., Wardal, W. J., Tabor, S., & Kuboń, M. (2021). Biomass energy technologies from innovative dairy farming systems. Processes. 9(2), 335. https://doi.org/10.3390/pr9020335.
- Sassi, H.P., Ikner, L.A., Abd-Elmaksoud, S., Gerba, C.P. & Pepper, I.L. (2018). Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion. Science of the Total Environment. 615, 15-19. DOI: 10.1016/j.scitotenv.2017.09.205.
- Sikora, J., Niemiec, M., Szeląg-Sikora, A., Gródek-Szostak, Z., Kuboń, M. & Komorowska, M. (2020). The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas. Energies. 13(7), 1825. https://doi.org/10.3390/en13071825.
- Singh, A. & Pandey, J. (2012). Metal contamination and health risk from consumption of organically grown vegetables influenced by atmospheric deposition in a seasonally dry tropical region of India. Bulletin of Environmental Contamination and Toxicology. 89, 384-389. https://doi.org/10.1007/s00128-012-0690-z.
- Skibko, Z., Romaniuk, W., Borusiewicz, A. & Porwisiak, H. (2021). Use of pellets from agricultural biogas plants in fertilisation of oxytrees in Podlasie, Poland. Journal of Water and Land Development. 51(4), 124-128. https://doi.org/10.24425/jwld.2021.139022.
- Sobol, Z., Jakubowski, T., & Wrona, P. (2020). Impact of UV-C stimulation of tubers, immersion of potato sticks in water and frying fat type on the content of fat in dry mass of French fries. Agricultural Engineering, 24(1), 47-55.
- Sogn, T.A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G. & Eich-Greatorex, S. (2018). Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture. 7, 49-58. https://doi.org/10.1007/s40093-017-0188-0.
- Suproniuk, M., Skibko, Z. & Stachno, A. (2019). Diagnostics of some parameters of electricity generated in wind farms. Przegląd Elektrotechniczny. 11, 105-108, DOI 10.15199/48.2019.11.28.
- Szparaga, A., Tabor, S., Kocira, S., Czerwińska, E., Kuboń, M., Płóciennik, B. & Findura, P. (2019). Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability. 11(21), 6093. https://doi.org/10.3390/su11216093.
- Tallou, A., Haouas, A., Jamali, M.Y., Atif, K., Amir, S. & Aziz, F. (2020). Review on cow manure as renewable energy. Smart Village Technology: Polyvalent team in Research and Development; Springer International Publishing. Cham, Switzerland, 341-352. https://doi.org/10.1007/978-3-030-37794-6_17.
- Trypolska, G., Kyryziuk, S., Krupin, V., Wąs, A. & Podolets, R. (2022). Economic Feasibility of Agricultural Biogas Production by Farms in Ukraine. Energies. 15, 87. https://doi.org/10.3390/en15010087.
- Tsachidou, B., Scheuren, M., Gennen, J., Debbaut, V., Toussaint, B., Hissler, C., George, I. & Delfosse, P. (2019). Biogas residues in substitution for chemical fertilizers: A comparative study on a grassland in the Walloon Region. Science of the Total Environment. 666, 212-225. https://doi.org/10.1016/j.scitotenv.2019.02.238.
- Tsapekos, P., Kougias, P.G., Frison, A., Raga, R. & Angelidaki, I. (2016). Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresource Technology. 216, 545-552. https://doi.org/10.1016/j.biortech.2016.05.117.
- Tyagi, V.K., Fdez-Güelfo, L.A., Zhou, Y., Álvarez-Gallego, C.J., Garcia, L.I.R. & Ng W.J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews. 93, 380-399. https://doi.org/10.1016/j.rser.2018.05.051.
- Tymińska, M., Skibko, Z. & Borusiewicz, A. (2023). The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies. 16, 4600. https://doi.org/10.3390/en16124600.
- Urra, J., Alkorta, I. & Garbisu, C. (2019). Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy. 9, 542. https://doi.org/10.3390/agronomy9090542.
- Van, D.P., Fujiwara, T., Leu Tho, B., Song Toan, P.P. & Hoang Minh, G. (2019). A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental Engineering Research. 25, 1-17. DOI: https://doi.org/10.4491/eer.2018.334.
- Velthof, G.L., Lesschen, J.P., Webb, J., Pietrzak, S., Miatkowski, Z., Pinto, M., Kros, J. & Oenema, O. (2014). The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Science of the Total Environment. 468-469. https://doi.org/10.1016/j.scitotenv.2013.04.058.
- Żelezik, M. (2009). Why organic farming. Rocznik Świętokrzyski. Ser. B, Nauki Przyr. Kielce 30, 155-166.
- Zhou, L., Hülsemann, B., Merkle, W., Guo J., Dong, R., Piepho, H.P., Gerhards, R., Müller, J. & Oechsner, H. (2020) Influence of Anaerobic Digestion Processes on the Germination of Weed Seeds. Gesunde Pflanzen. 72, 181-194 (2020). https://doi.org/10.1007/s10343-020-00500-y.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ca7b68d-f0e2-4245-b31f-6c64eec6e3e3