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MATHEMATICAL MODEL ANALYSIS OF SAMPLE FROM 
POLYURETHANE VIBROINSULATION MAT 

Summary: The paper presents further developments in mathematical modelling of 
vibroinsulation mats. There was proposed the introduction of new parameters for 
characterizing the properties of the mat. An attempt to analyze the model in terms 
of its dynamic properties resulting from the determination of frequency transfer 
function was made. In conclusion the methodology of the studies necessary to 
quantify the material constants model was described. 
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1. INTRODUCTION 

Vibroinsulation mats used for loaded track railways must meet appropriate 
standards for static and dynamic properties. The tests are carried out in 
laboratory using a testing machine, working at specified frequencies. The test 
specimens have a prismatic shape of plan dimensions 500 × 500 mm and a height 
corresponding to the thickness of the final product. 

Due to lack of access to this type of equipment, author decided to adopt an 
instrument DMA 242D Netzsh for that purpose. In this case, the test sample 
takes the form of a cylinder, height up to 6 mm. 

Figure 1 shows symbolically the dimensions and geometry of the produced 
vibroinsulation mats and analyzed sample cut from the specimen. 

 
Fig. 1. Manufactured mat and a cut out (manufactured) sample, mA – area of polyurethane mas, 

sA – area of cylindrical sample  
Rys. 1. Wyprodukowana mata oraz wycięta (wyprodukowana) próbka, mA  – powierzchnia maty 

poliuretanowej, sA – powierzchnia próbki cylindrycznej 
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It is necessary to develop methods for transfer of results obtained by testing 
samples of small size, disproportionate to the final product, which can be used 
process the results obtained from the available DMA device. The first step in 
this direction is to develop a mathematical model of tested sample. 

2. MATHEMATICAL MODEL ANALYSIS 

a. Analysis of limitations – the simplifying postulates 

Using of classical similarity method is not possible in the present case 
because the basic condition for their application is geometric similarity of the 
final product and the sample. As shown in Figure 1, this condition cannot be 
achieved due to two reasons: difference of shape (prismatic and cylindrical) and 
impossibility to provide the scale of the similarity between two corresponding 
linear dimensions. The shape and dimensions of the test samples are imposed by 
available measuring equipment. Testing device is DMA 242 D produced by 
NETZSCH company. The maximum sample radius results from the limited 
hardware possibilities, accepted standards and the following relationship: 

 max max sF Aσ= ⋅  (1) 

where: 
maxF   – maximum force possible to realize on the DMA 242D, in this case  

   7,272 N, 
maxσ  –  maximum stress range N·m-2, according to DIN 45673-5:2010-08, 
sA   –  sample area, mm2. 

 
From equation (1) the maximum radius of the cylindrical sample can be 

determined: 

 max

max

2
13,6 mm

F
r

π σ
⋅

= ≈
⋅

 (2) 

Due to the complexity of created mathematical model [1], it was important 
to determine and apply a series of simplifications, which allow specify the 
constituent parameters, based on the subsequent experimental studies. 
Vibroinsulation mat is porous, roughly one half of the pores is open and the 
other one closed. The mat is coated on its whole surface by a layer of a clearly 
increased density, called "skin". 

It was assumed that the structure of the material is isotropy and homogeneity. 
Its material properties strongly depend on temperature, and therefore temperature 
has to be stabilized during experimental studies. In the first approximation any 
relationships take the linear character. The stress distribution in the sample is only 
uniaxial. 
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b. The solution of the equations describing the model 

As noted in the abstract the mathematical model of sample was shown in 
paper [1]. 

 
Fig. 2. Sample tested: a) cross-section of the actual sample, b) created physical model 
Rys. 2. Badana próbka: a) przekrój próbki rzeczywistej, b) utworzony model fizyczny 

Based on Figure 2, it is possible to write the equations of motion [1]: 

 
( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( )( )

3 3 3 3 1 3 3 1

1 2 1 1 2 1 4 1 2 1 4 3 3 1 3 3 1

4 4 4 4 4 4 1 2 1 4 1 2 1 4

m x b x x k x x F

m m x b b x x k k x x b x x k x x

m x b x k x b b x x k k x x

ω+ − + − =

+ + + − + + − = − + −

+ + = + − + + −

 (3) 

where: 
ix   – displacement of the upper layer of the sample element, m, 
im   – mass, kg, 

ib   – damping coefficient, Ns·m-2, 
ik   – stiffness, N·m-2, 
( )F ω  – driving force, according to DIN 45673-5, N, 
1, 2, 3, 4i =  the index that means respective: fundamental (porous) part of 

the sample, upper, side and lower skin layer. 

It was assumed that the displacements are calculated from the static stable 
balance point. This assumption allow an adoption of zero initial conditions 

(0) 0ix =  and (0) 0ix = . After applying to the (3) Laplace transform and 
rearranging data formula was given by: 

 
( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2
3 3 3 3 3 1

2
1 2 1 1 2 1 2 1 4 3 3 3 1

2
4 4 4 4 1 2 1 2 1 4

m s X b s k X X F s

m m s X b b s k k X X b s k X X

m s b s k X b b s k k X X

+ + − =

+ + + + + − = + −  

+ + = + + + −  

 (4) 
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where: 
( )iX X s=  means the Laplace transformed outputs (displacements), m, 

( )F s  – the Laplace transformed input (driving force), N, 
s  – Laplace operator, -1[s ] , other symbols as in formula (3). 

 

The system defined by equations (3) can be written in matrix form 

 

( )
( ) ( ) ( )

( ) ( )

( )
( )

( )

2
3 3 3 3 3

2
1 2 1 2 3 1 2 3 3 3

1 2 1 2

1

1 2 1 2 3

2
44 1 2 4 1 2 4

0

0
0
0

b s k m s b s k
m m s b b b s k k k b s k

b b s k k

X F s
b b s k k X

Xm s b b b s k k k

 − + + +


+ + + + + + + − +
 − + + +  

   
   − + + + =      
   + + + + + +    

 (5a) 

or in short form: 

 m =A X F  (5b) 

where: 

 

( )
( ) ( ) ( )

( ) ( )

( )
( )

2
3 3 3 3 3

2
1 2 1 2 3 1 2 3 3 3

1 2 1 2

11 12

1 2 1 2 21 22 23

2
31 334 1 2 4 1 2 4

0

0 0

0

m

b s k m s b s k
m m s b b b s k k k b s k

b b s k k

a a
b b s k k a a a

a am s b b b s k k k

 − + + +


= + + + + + + + − +
 − + + +  

  
  − + + + =     
  + + + + + +  

A

 

 is a matrix of coefficients resulting from the material properties of 
particular elements of this sample 

 
1

3

4

X
X
X

 
 =  
  

X  is output quantity vector (in our case the images of deviations of 

the upper surface of the particular elements from stable balance 

 
( )
0
0

F s 
 =  
  

F  is a vector of inputs, reduced in the present case to one 

driving force. 
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The value we are interested in: ( ) 3 ( )X s X s= , can be calculated from the 
equation 

 ( ) 3
3 ( ) m

m

X s X s= =
A
A

 (6) 

where: 
 mA  is the main determinant of a matrix derived earlier mA , 

 

( ) ( )
( ) ( )

( )

( )
( )

( )

3 3
2

3 1 2 1 2 3 1 2 3

1 2 1 2

11

1 2 1 2 21 23

2
31 334 1 2 4 1 2 4

0
0

0 0
0
0

m

b s k F s
m m s b b b s k k k

b b s k k

a F s
b b s k k a a

a am s b b b s k k k

− +
= + + + + + + +

− + + +  

−  + + +  = 
+ + + + + +

A

 

 
 is a auxiliary determinant associated with the variable ( ) 3 ( )X s X s= . 
 

Therefore, the main determinant takes the form: 

 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
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2 2
3 3 4 1 2 4 1 2 4

2 2
1 2 1 2 3 3 3

2 2
1 2 1 2 3 1 2 3 3 3 3

2
4 1 2 4 1 2 4

m a a a a a a a a a

b s k m s b b b s k k k

b b s k k m s b s k

m m s b b b s k k k m s b s k

m s b b b s k k k

= + − =

 = + + + + + + + + 

+ + + + + + +  

 − + + + + + + + + + 
 + + + + + + 

A

 (7) 

However, determinant 3mA  has form: 

 

( ) ( )

( ){ ( ) ( )

( ) } ( )

3 31 23 21 33

2 2
1 2 1 2 1 2 1 2 3 1 2 3

2
4 1 2 4 1 2 4

m a a a a F s

b b s k k m m s b b b s k k k

m s b b b s k k k F s

= − =

 + + + − + + + + + + +    

 + + + + + + 

A

 (8) 

The transfer function is defined as the ratio of the Laplace transform of the 
output ( )X s  to the Laplace transform of the input ( )F s  is given by (9): 

 ( ) ( )
( )

X s
G s

F s
=  (9) 

After substituting s iω=  for the Laplace operator, where ω  is angular 
frequency of driving force ( )F ω ), we get a spectral transfer function ( )G iω , 
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which can be shown as ( ) ( )( ) ( )( )Re ImG i G i Gω ω ω= + . The real part of 

( )( )Re G Gω ′=  is an equivalent of storage modulus E ′  and describes the 
ability to store potential energy and release it upon deformation, while the 
imaginary part of ( )( )Im G Gω ′′=  corresponds to loss modulus E ′′  
proportional to energy dissipation in the form of heat upon deformation. The 
modules E ′ and E ′′  are known from dynamic mechanical analysis. 

3. DECOMPOSITION OF THE SAMPLE 

The basic problem is to determine the parameters im , ib , ik  for 1,2,3,4i =  
While parameters im  don't present difficulties, because 1 1fm Vρ=  and 

2,3,4i s im V iρ= = , where fρ  is density of foam and sρ  is density of the 
skin, other parameters are difficult to identify because they depend on 
dimensions and shape of sample. But we can see that there are only two types of 
material: the porous foam and the skin. 

As seen in Fig. 3, the sample components analyzed separately have 
different shape. Below is shown the proposal to introduce new universal 
properties: characteristic damping coefficient b̂  and characteristic stiffness k̂  
related to the unit volume of material. Then the damping coefficient and 
stiffness for each element are defined by formulas: 

 
Fig. 3. Possible decomposition of the sample to the basic elements 
Rys. 3. Możliwa dekompozycja próbki na podstawowe elementy 

 1
ˆˆ N s mˆ

i
i

t

A
b b

h
−= ⋅ ⋅  (10) 

 1ˆˆ N mˆ
i

i
t

A
k k

h
−

= ⋅  (11) 

 



Mathematical model analysis of sample from... 
 

 19 

where in formulas (10) and (11): 
ib  – damping coefficient of i-th element of the sample, N·s·m-1, 
ik  – stiffness of i-th element of the sample, N·m-1, 

0
0

ˆ 1mi
hh h
h

= =  – relative height i-th element of the sample, –, 

2
0

0

ˆ 1mi
AA A
A

= =  – relative area i-th element of the sample, –, 

h  – real height of i-th element of the sample, measured along the axis of 
driving force, m, 

A  – real surface perpendicular to the direction of the driving force of i-th 
element of the sample, m2. 

Possibilities of manufacturing different samples are presented in Fig. 4. 
Distribution of the skin on tested sample depends on whether it is cut or 
manufactured. Different samples allow to determine the material properties by 
the experimental methods for porous foam and skin. 

 
Fig. 4. The possibilities of skin position in the sample 

Rys. 4. Możliwości rozmieszczenia lica próbki 

Equations (3) for simplified samples presented in Fig. 4 are reduced 
equations as written below, respectively: 

 ( )1 1 1 1 1 1m x b x k x F tω+ + =  (12) 

 ( ) ( ) ( ) ( )1 2 1 1 2 1 1 2 1m m x b b x k k x F tω+ + + + + =  (13) 

 ( ) ( ) ( )
( ) ( )

3 3 3 3 1 3 3 1

1 1 1 1 1 1 3 3 1 3 3 1

m x b x x k x x F t
m x b x k x b x x k x x

ω+ − + − =
+ + = − + −  (14) 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 3 1 3 3 1 3 3 1

1 2 1 1 2 1 1 2 1 3 3 1 3 3 1

m x x b x x k x x F t
m m x b b x k k x b x x k x x

ω− + − + − =
+ + + + + = − + −

 (15) 

In general, to determine the four parameters 1̂k , , 1̂b , and 

2 3 41
ˆ ˆ ˆb b b= =  it is sufficient to study only two types of samples because the 

obtained transfer functions are complex numbers and each of them enables 

2 3 4
ˆ ˆ ˆk k k= =
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determination of the two properties. Studies of the other two types of samples 
will be used to verify the assumptions. 

4. CONCLUSIONS 

The obtained mathematical model of the sample is linear. At the present 
stage of research it is difficult to evaluate the degree of its real nonlinearity. It 
seems that at first should be tested the simplest type of samples (consisting only 
of specific part of mats – porous, without skin) resultant from decomposition of 
the basic sample. For the model of this sample defined analytically it will be 
possible to determine experimentally the parameters 1b  and 1k  for different 
angular frequency ω  defined in the standard. Differences from the constants, 
parameters 1b , and 1k  will be a measure of the nonlinearity of the model (its 
inaccuracy) and allow evaluation error during test. 

In the next steps of research should be verified the correctness of the 
assumptions made in the formulas (10) and (11). In the studies will be used 
samples with different cross sections and heights. On them will be applied the 
force with constant circular frequency. 

The model presented in this paper is the first linear approximation, but 
allows understanding of the future the research program and familiarization 
with the essence of the problem. 
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ANALIZA MODELU MATEMATYCZNEGO  
PRÓBKI MATY WIBROIZOLACYJNEJ 

Streszczenie: W pracy zaprezentowano kolejny etap rozwoju modelu matema-
tycznego poliuretanowej maty wibroizolacyjnej. Zaproponowano wprowadzenie 
nowych parametrów chrakteryzujących własności maty. Podjęto próbę analizy 
modelu ze względu na jego własności dynamiczne wynikające z określenia trans-
mitancji częstotliwościowej. W podsumowaniu opisano metodykę badań konie-
cznych do ilościowego określenia stałych materiałowych modelu. 

Słowa kluczowe: mata wibroizolacyjna, moduł stratności, moduł zachowawczy, 
model matematyczny 


