PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new geoid for Brunei Darussalam by the collocation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczenie przebiegu nowej geoidy na obszarze Brunei Darussalam metodą kolokacji
Języki publikacji
EN
Abstrakty
EN
Computation of a new gravimetric geoid in Brunei was carried out Rusing terrestrial, airborne and altimetric gravity data and the EGM08 geopotential model by the collocation method. The computations were carried out by the „remove-restore” technique. In order to have better insight in the quality of input data the estimation of accuracy of the gravity data and geoid undulations from GPS/levelling data was carried out using EGM08 geopotential model. It shows a poor quality of GPS/levelling data. Result of the computation is the gravimetric geoid for the territory of Brunei computed by collocation method with an accuracy estimated below of ±0.3 m.
PL
Wyznaczenie przebiegu nowej geoidy na obszarze Brunei zostało zrealizowane z wykorzystaniem lądowych, lotniczych i altimetrycznych danych grawimetrycznych oraz modelu geopotencjału EGM08 metodą kolokacji. Obliczenia zostały przeprowadzone z wykorzystaniem techniki „removerestore”. W celu uzyskania lepszego wglądu, w jakość danych wejściowych oszacowano dokładność danych grawimetrycznych i geometrycznych odstępów geoidy od elipsoidy na punkach sieci GPS wykorzystując do tego celu model geopotencjału EGM08. Z przyprowadzonych oszacowań wynika przede wszystkim niska dokładność danych GPS/niwelacja. Wynikiem przeprowadzonych obliczeń jest grawimetryczna geoida dla obszaru Brunei, obliczona metodą kolokacji, której dokładność szacuje się poniżej ±0.3 m.
Rocznik
Strony
183--198
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn Faculty of Geodesy and Land Management Depatment of Land Surveying and Geomatics Michala Oczapowskiego 2, 10-719 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn Faculty of Geodesy and Land Management Depatment of Land Surveying and Geomatics Michala Oczapowskiego 2, 10-719 Olsztyn, Poland
autor
  • Wroclaw University of Environmental and Life Science Faculty of Environmental Engineering and Geodety Plac Grunwaldzki 24a, 50-365 Wrocław, Poland
Bibliografia
  • [1] Becker, J. J., D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, P. Weatherall. (2009). Global Bathymetry and Elevation Data at 30 Arc Secondo Resolution: SRTM30_PLUS, Marine Geodesy, 32:4, 355-371.
  • [2] Claessens, S.J., Hirt, C., Amos, M. J., Featherstone, W. E. & Kirby, J. K. (2011). The NZGEOID09 model of New Zealand, Survey Review, vol. 43, pp. 2-15.
  • [3] Corchete, V. & Pacino, M. C. (2007). The fi rst high-resolution gravimetric geoid for Argentina: GAR,” Physics of the Earth and Planetary Interiors, vol. 161, pp. 177-183, May 16 2007.
  • [4] Daras, I., Fan H., Papazissi, K. & Fairhead, J. D. (2010). Determination of a Gravimetric Geoid Model of Greece Using the Method of KTH,” in Gravity, Geoid and Earth Observation. Proceedings of the International Association of Geodesy vol. 135, S. P. Mertikas, Ed., pp. 407-413.
  • [5] Dawod, G.M. (2008). Towards the redefi nition of the Egyptian geoid: Performance analysis of recent global geoid and digital terrain models, Journal of Spatial Science, vol. 53, pp. 31-42.
  • [6] Denker, H., Barriot, J. P., Barzaghi, R., Fairhead, D., Forsberg, R., Ihde, J., Kenyeres, A., Marti, U., Sarrailh, M., & Tziavos, I. N. (2009). The Development of the European Gravimetric Geoid Model EGG07, in Sideris, M. G., ed., Observing Our Changing Earth, Proceedings of the International Association of Geodesy Volume 133, p. 177-185.
  • [7] Forsberg, R. (1987). A New Covariance Model for Inertial Gravimetry and Gradiometry. Journal of Geophysical Research, Vol. 92, No B2, pp. 1005-1010.
  • [8] Hwang, J.S., Han H. C., Han S. C., Kim K. O., Kim J. H., & Kang M. H.(2012). Gravity and geoid model in South Korea and its vicinity by spherical cap harmonic analysis, Journal of Geodynamics, vol. 53, pp. 27-33, Jan 2012.
  • [9] Kearsley, A. H., Forsberg W., Olesen R., Bastos A., Hehl L,, Meyer K., Gidskehaug, U. A. (1988).
  • [10] Airborne gravimetry used in precise geoid computations by ring integration, Journal of Geodesy, vol. 72, pp. 600-605.
  • [11] Unauthenticated Kuroishi, Y. (2009). Improved geoid model determination for Japan from GRACE and a regional gravity fi eld model, Earth Planets and Space, vol. 61, pp. 807-813, Krynski, J. & Kloch, G. (2009). Evaluation of the performance of the new EGM08 global geopotential model over Poland, Geoinformation Issues, Vol. 1, No 1, Warsaw, pp. 7-17.
  • [12] Łyszkowicz, A. (2010). Quasigeoid for the area of Poland computed by least squares collocation, Technical Sciences, No 13.
  • [13] Łyszkowicz, A. (2012). Geoid in the area of Poland in the author’s investigations, Technical Sciences, No 15(1), pp.49-64.
  • [14] Morgan, P. Kasenda, A., Kearsley A. H. W., Ukoi N., Kong J., & Udan A. (2004). GPS geodesy In Brunei Darussalem during 2002 and 2003, Report submitted to Survey Department, Ministry of Development, Bandar Seri Begawan, Brunei Darussalam.
  • [15] Moritz, H. (1989). Advanced physical geodesy, second edition, Wichmann.
  • [16] Nordin, A.F., Abu S. H. J., Hua Ch. L. & Nordin S. (2005). Malaysia precise geoid (MyGEOID), Coordinates, vol. I, issue 4, pp.30-37.
  • [17] Olliver J.G. (2007). “The gravimetric geoid of Tanzania,” Survey Review, vol. 39, pp. 212-225, Jul 2007.
  • [18] Olesen, A. V., Forsberg, R., Keller, K. & Kearsley, A. H. W. (2002). Error sources in airborne grawimetry employing a spring-type gravimeter: Vistas for Geodesy in the New Millennium, Proceedings of the International Association of Geodesy v. 125, p. 205-210.
  • [19] Pavlis, N. K., Holmes S. A., Kenyon S.C., & Factor J. K.. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research-Solid Earth 117.
  • [20] Ryan, KT. (2009). Replacement of Brunei datum to geocentric datum phase II (height modernization system, of Brunei Darussalam) JUA/2/2009, Geoid computation for Brunei Darussalam, Version 1.0, Prepared by KT Ryan Communications & Services.
  • [21] Sandwell, D. T. & F. Smith, W. H. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, Journal. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008.
  • [22] Sideris, M.G. (1994). Techniques for geoid determination, In Geoid and its geophysical interpretations, (Eds. Vaniček and Christou), CRC Press.
  • [23] Smith, W. H. F. & Sandwell D. T. (1997). Global seafl oor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962.
  • [24] Tahir, M. Ali, J., Omar, K., Khairul Anuar Abdullah, Dr Tajul Ariffi n Musa, Rusli Othman, (2011). The realization of geocentric datum for Brunei Darussalam 2009, Coordinates.
  • [25] Torge, W., 2001, Geodesy, third edition, de Gruyter.
  • [26] Tscherning, C., Forsberg, R. & Knudsen, P. (1992). The GRAVSOFT package for geoid determination, First Continental Workshop On The Geoid In Europe “Towards a Precise Pan-European Reference Geoid for the Nineties” Prague, May 11–14.
  • [27] Wan Mohd, A., Wan Abdul A., Fashir H., & Zainon, O. (1998). Evaluation of EGM96 model of the geopotential in Peninsular Malaysia, In: Seminar Geoinformasi, Universiti Teknologi Malaysia, Kuala Lumpur.
  • [28] Wichiencharoen, C. (1982). The Indirect Effects on the Computation of Geoid Undulations, The Ohio State University, Department of Geodetic Science and Surveying, Report No. 336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c9aa069-a42c-4b4b-bb55-0abeddb39a35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.