PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrokinetic and flotation behavior of rutile in the presence of lead ions and aluminium ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of Pb(II) ions and Al(III) ions on the electro kinetic and flotation behavior of rutile were investigated by micro-flotation tests, zeta potential measurements and solution chemistry analysis. Micro-flotation results indicate that the Pb(II) ions can effectively improve the flotation recovery of rutile while the Al(III) ions significantly inhibit the flotation of rutile. Zeta potential measurements reveal that a collector styrene phosphoric acid (SPA) can adsorb on the rutile surface after the addition of Pb(II) ions, but hardly adsorb on the rutile surface after the addition of Al(III) ions. Pb(II) ions adsorb on the rutile surface in the form of Pb(OH)+ and Pb(OH)2(s), and the latter one is the main reason that activates rutile flotation. Al(III) ions adsorb on the rutile surface mainly in the form of Al(OH)3(s), which prevent the direct interaction between the rutile and the collector, resulting in a decrease of rutile flotation recovery.
Słowa kluczowe
Rocznik
Strony
458--466
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Radioactive and Rare Scattered Mineral Comprehensive Utilization,Ministry of Land and Resource, Shaoguan, 512026, China
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores, Ministry of Natural Resources, Zhengzhou, 450006, China
  • China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou, 450006, Henan, China
Bibliografia
  • ALVAREZ-SILVA, M., URIBE-SALAS, A., WATERS, K.E., FINCH, J.A., 2016. Zeta potential study of pentlandite in the presence of serpentine and dissolved mineral species. Minerals Engineering. 85, 66-71.
  • ANANTHAPADMANABHAN, K., SOMASUNDARAN, P., 1985. Surface precipitation of inorganics and surfactants and its role in adsorption and flotation. Colloids and Surfaces. 13, 151-167.
  • CHEN, P., ZHAI, J., SUN, W., HU, Y., YIN, Z., 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Minerals Engineering. 111, 100-107.
  • COOKE, S., 1949. The flotation of quartz using calcium ion as activator. Transductions of the American Institute of Mining and Metallurgical Engineering. 184, 306-309.
  • DENG, R., HU, Y., KU, J., ZUO, W., YANG, Z., 2017. Adsorption of Fe (III) on smithsonite surfaces and implications for flotation. Colloids and Surfaces A. 533, 308-315.
  • DIEBOLD, U., 2003. The surface science of titanium dioxide. Surface Science Reports. 48, 53-229.
  • EJTEMAEI, M., IRANNAJAD, M., GHARABAGHI, M., 2012. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector. International Journal of Mineral Processing. 114, 40-47.
  • FAN, X., ROWSON, N., 2000. The effect of Pb (NO3) 2 on ilmenite flotation. Minerals Engineering. 13, 205-215.
  • FANG, C., CHANG, Z., FENG, Q., XIAO, W., YU, S., QIU, G., WANG, J., 2017. The Influence of Backwater Al3+ on Diaspore Bauxite Flotation. Minerals. 7, 195.
  • FENG, Q., ZHAO, W., WEN, S., CAO, Q., 2017. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Separation and Purification Technology. 178, 193-199.
  • FUERSTENAU, D., RAGHAVAN, S., 1976. Some aspects of the thermodynamics of flotation. Flotation--A. M.Gaudin Memorial.
  • FUERSTENAU, D.W., PRADIP, 2005. Zeta potentials in the flotation of oxide and silicate minerals. Advances in Colloid & Interface Science. s 114–115, 9-26.
  • FUERSTENAU, M., LOPEZ-VALDIVIESO, A., FUERSTENAU, D., 1988. Role of hydrolyzed cations in the natural hydrophobicity of talc. International Journal of Mineral Processing. 23, 161-170.
  • FUERSTENAU, M., PALMER, B., 1976. Anionic flotation of oxides and silicates. Flotation--A. M. Gaudin Memorial.
  • HU, Y., WANG, D., 1987. Mechanism of adsorption and activation flotation of metallic ion on oxide mineral-water interface. Journal of Central South Mining Institute. 5, 38-48.
  • JAMES, R.O., HEALY, T.W., 1972. Adsorption of hydrolyzable metal ions at the oxide—water interface. I. Co (II) adsorption onSiO2 and TiO2 as model systems. Journal of Colloid and Interface Science. 40, 42-52.
  • JIE, Z., WEIQING, W., JING, L., YANG, H., QIMING, F., HONG, Z., 2014. Fe (III) as an activator for the flotation of spodumene, albite, and quartz minerals. Minerals Engineering. 61, 16-22.
  • LAZARIDIS, N., MATIS, K., STALIDIS, G., MAVROS, P., 1992. Dissolved-air flotation of metal ions. Separation Science and Technology. 27, 1743-1758.
  • LI, H., MU, S., WENG, X., ZHAO, Y., SONG, S., 2016. Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface. Colloids and Surfaces A. 506, 431-437.
  • LI, Y.-k., ZHANG, Z.-h., SUN, J., 1982. About of flotation activation law and mechanism of calcium and iron ions on beryl and spodumene.Chinese Journal of Rare Metals. 1, 31-411.
  • LIN, H., YIN, W., SUN, C., 2003. XPS analysis on adsorption law of metal ion on surface of silicate minerals. Nonferrous Met. Min. Metall. 19, 21.
  • LIU, C., FENG, Q., ZANG, G., MA, W., MENG, Q., CHEN, Y., 2016. Effects of lead ions on the flotation of hemimorphite using sodium oleate. Minerals Engineering. 89, 163-167.
  • LIU, Q., PENG, Y., 1999. The development of a composite collector for the flotation of rutile. Minerals Engineering. 12, 1419-1430.
  • LIU, W., ZHANG, S., WANG, W., ZHANG, J., YAN, W., DENG, J., FENG, Q., HUANG, Y., 2015. The effects of Ca (II) and Mg (II) ions on the flotation of spodumene using NaOL. Minerals Engineering. 79, 40-46.
  • LLEWELLYN, T.O., SULLIVAN, G.V., 1982. Froth flotation of rutile. Google Patents.
  • LUO, N., WEI, D., SHEN, Y., HAN, C., ZHANG, C., 2017a. Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite. Minerals. 7, 150.
  • LUO, X., WANG, Y., MA, M., SONG, S., ZANG, Y., DENG, J., LIU, J., 2017b. Role of dissolved mineral species in quartz flotation and siderite solubility simulation.Physicochem. Probl. Miner. Process. 53(1), 1241-1254.
  • MADELEY, J., GRAHAM, K., 1966. Flotation of rutile with anionic and cationic collectors. Journal of Applied Chemistry. 16, 169-170.
  • MCNULTY, G., 2007. Production of titanium dioxide, Proceedings of NORM V international conference, Seville, Spain. Citeseer, pp. 169-189.
  • NAGARAJ, D., BRINEN, J., 1997. SIMS analysis of flotation collector adsorption and metal ion activation on minerals: recent studies. Transactions of the Indian Institute of Metals. 50, 365-376.
  • PARKS, G.A., 1965. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews. 65.
  • SCOTT, J., SMITH, R., 1993. Calcium ion effects in amine flotation of quartz and magnetite. Minerals engineering. 6, 1245-1255.
  • SHI, Q., ZHANG, G., FENG, Q., Ou, L., Lu, Y., 2013. Effect of the lattice ions on thecalcite flotation in presence of Zn (II). Minerals Engineering. 40, 24-29.
  • STANAWAY, K., 1994. Overview of titanium dioxide feedstocks. Mining engineering. 46, 1367-1370.
  • WANG,J., CHENG,H.-W., ZHAO, W.-Q., QIU, G.-Z., 2016. Flotation behavior and mechanism of rutile with nonyl hydroxamic acid. Rare Metals. 35, 419-424.
  • WANG, J., HENG, H., ZHAO, H.-B., QIN, W.-Q., W., QIU, G.-Z., 2014. Flotation behavior and mechanism of rutile in presence of sodium oleate. Chin J Nonferrous Met. 24, 820.
  • WANG, P.-P., QIN, W.-Q., REN, L.-Y., QIAN, W., LIU, R.-Z., YANG, C.-R., Zhong, S.-p., 2013. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite. Transactions of Nonferrous Metals Society of China. 23, 1789-1796.
  • XIAO, W., CAO, P., LIANG, Q., PENG, H., ZHAO, H., QIN, W., QIU, G., WANG, J., 2017. The activation mechanism of Bi3+ ions to rutile flotation in a strong acidic environment. Minerals. 7, 113.
  • YIN, W.-Z., SUN, C.-Y., 2002. X-ray photoelectron spectrometric analysis on surface property of silicate minerals. Journal-Northeastern University Natural Science. 23, 156-159.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c91fa53-086f-4430-830d-1fadd736068b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.