Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Multispectral fluorescence and chemometric methods in (bio)analytical applications
Języki publikacji
Abstrakty
The design of methods based on chemical “fingerprints” (a set of analytical signals) and chemometric tools is an important trend of novel (bio)analysis, aimed at reducing multistep sample preparation and the use of complex analytical instrumentation, while increasing the accessibility of (bio)analytical methods. The excitation-emission matrix (EEM) acquired during the multispectral fluorescence measurements is a potentially rich source of chemical information, serving as a unique, fluorescent "fingerprint" of the sample under investigation. This work summarizes the research on the generation and analysis of chemical “fingerprints”, conducted as part of the doctoral thesis of Klaudia Głowacz, PhD, Eng., under the supervision of Prof. Patrycja Ciosek-Skibińska, PhD, DSc, Eng. The research aimed to develop (bio)analytical methods based on fluorescence excitation-emission spectra and chemometric methods for various applications, including monitoring cell viability in adherent cell cultures, detecting neurotransmitters, amino acids, and oligopeptides, as well as amyloid-β derivatives associated with Alzheimer's disease. This article will discuss in detail the results of research on the development of analytical strategies for selected biological samples – cell cultures – to determine cell viability.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1079--1096
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
autor
- Katedra Biotechnologii Medycznej, Wydział Chemiczny, Politechnika Warszawska, Noakowskiego 3, 00-664 Warszawa
autor
- Katedra Biotechnologii Medycznej, Wydział Chemiczny, Politechnika Warszawska, Noakowskiego 3, 00-664 Warszawa
autor
- Katedra Biotechnologii Medycznej, Wydział Chemiczny, Politechnika Warszawska, Noakowskiego 3, 00-664 Warszawa
- Katedra Biotechnologii Medycznej, Wydział Chemiczny, Politechnika Warszawska, Noakowskiego 3, 00-664 Warszawa
Bibliografia
- [1] E. Szymańska, Modern data science for analytical chemical data - A comprehensive review, Anal. Chim. Acta 1028 (2018) 1-10.
- [2] W.L. Williams, L. Zeng, T. Gensch, M.S. Sigman, A.G. Doyle, E. V. Anslyn, The Evolution of Data-Driven Modeling in Organic Chemistry, ACS Cent. Sci. 7 (2021) 1622-1637.
- [3] J.R. Howard, A. Bhakare, Z. Akhtar, C. Wolf, E. V. Anslyn, Data-Driven Prediction of Circular Dichroism-Based Calibration Curves for the Rapid Screening of Chiral Primary Amine Enantiomeric Excess Values, J. Am. Chem. Soc. 144 (2022) 17269-17276.
- [4] P. Raghavan, B.C. Haas, M.E. Ruos, J. Schleinitz, A.G. Doyle, S.E. Reisman, M.S. Sigman, C.W. Coley, Dataset Design for Building Models of Chemical Reactivity, ACS Cent. Sci. 9 (2023) 2196-2204.
- [5] S.J. Lusher, R. McGuire, R.C. Van Schaik, C.D. Nicholson, J. De Vlieg, Data-driven medicinal chemistry in the era of big data, Drug Discov. Today 19 (2014) 859-868.
- [6] J.F. Rodrigues, L. Florea, M.C.F. de Oliveira, D. Diamond, O.N. Oliveira, Big data and machine learning for materials science, Discov. Mater. 1 (2021).
- [7] E. V. Anslyn, J.R. Howard, Eric’s Corner-My Sabbatical Tour - “Tik-Tok of Oz”a Labs, Supramol. Chem. 34 (2022) 64-65.
- [8] H. Parastar, R. Tauler, Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists, Angew. Chemie 134 (2022) e201801134.
- [9] N. Weng, S. Patel, W. Jian, Bioanalysis of small and large molecule drugs, metabolites, and biomarkers by LC-MS, 2nd ed., Elsevier B.V. (2020) 3-33.
- [10] M. Aghababaie, E.S. Foroushani, Z. Changani, Z. Gunani, M.S. Mobarakeh, H. Hadady, M. Khedri, R. Maleki, M. Asadnia, A. Razmjou, Recent Advances In the development of enzymatic paper-based microfluidic biosensors, Biosens. Bioelectron. 226 (2023) 115131.
- [11] W.J. Peveler, M. Yazdani, V.M. Rotello, Selectivity and Specificity: Pros and Cons in Sensing, ACS Sensors 1 (2016) 1282-1285.
- [12] Z. Boeva, Z. Mousavi, T. Sokalski, J. Bobacka, Recent trends in non-invasive on-body chemical sensing, TrAC - Trends Anal. Chem. 172 (2024) 117542.
- [13] S.H. Rutherford, A. Nordon, N.T. Hunt, M.J. Baker, Biofluid analysis and classification using IR and 2D-IR spectroscopy, Chemom. Intell. Lab. Syst. 217 (2021) 104408.
- [14] H.J. Butler, P.M. Brennan, J.M. Cameron, D. Finlayson, M.G. Hegarty, M.D. Jenkinson, D.S. Palmer, B.R. Smith, M.J. Baker, Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer, Nat. Commun. 10 (2019) 1-9.
- [15] H. Muhamadali, A. Subaihi, M. Mohammadtaheri, Y. Xu, D.I. Ellis, R. Ramanathan, V. Bansal, R. Goodacre, Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms: Via multiple vibrational spectroscopic fingerprinting, Analyst 141 (2016) 5127-5136.
- [16] A. Travo, C. Paya, G. Déléris, J. Colin, B. Mortemousque, I. Forfar, Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes, Anal. Bioanal. Chem. 406 (2014) 2367-2376.
- [17] A. Koehler, M.L. Scroferneker, B.A.S. Pereira, N.M. Pereira de Souza, R. de Souza Cavalcante, R.P. Mendes, V.A. Corbellini, Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis, J. Pharm. Biomed. Anal. 221 (2022) 115021.
- [18] V.E. Sitnikova, M.A. Kotkova, T.N. Nosenko, T.N. Kotkova, D.M. Martynova, M. V. Uspenskaya, Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis, Talanta 214 (2020) 120857.
- [19] J. Lukose, A.K. Barik, Mithun N, Sanoop Pavithran M, S.D. George, V.M. Murukeshan, S. Chidangil, Raman spectroscopy for viral diagnostics, Biophys. Rev. 15 (2023) 199-221.
- [20] N.M. Ralbovsky, I.K. Lednev, Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 219 (2019) 463-487.
- [21] H.F. Nargis, H. Nawaz, A. Ditta, T. Mahmood, M.I. Majeed, N. Rashid, M. Muddassar, H.N. Bhatti, M. Saleem, K. Jilani, F. Bonnier, H.J. Byrne, Raman spectroscopy of blood plasma samples from breast cancer patients at different stages, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 222 (2019) 117210.
- [22] B. Liang, Y. Gao, J. Xu, Y. Song, L. Xuan, T. Shi, N. Wang, Z. Hou, Y.L. Zhao, W.E. Huang, Z.J. Chen, Raman profiling of embryo culture medium to identify aneuploid and euploid embryos, Fertil. Steril. 111 (2019) 753-762.
- [23] M. Harz, P. Rösch, J. Popp, Vibrational spectroscopy-A powerful tool for the rapid identification of microbial cells at the single-cell level, Cytom. Part A 75 (2009) 104-113.
- [24] T. Li, X. Zhu, X. Hai, S. Bi, X. Zhang, Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications, ACS Sensors 8 (2023) 994-1016.
- [25] H.A. Fargher, S. d’Oelsnitz, D.J. Diaz, E. V. Anslyn, Pushing Differential Sensing Further: The Next Steps in Design and Analysis of Bio‐Inspired Cross‐Reactive Arrays, Anal. Sens. 3 (2023) e202200095.
- [26] Z. Li, J.R. Askim, K.S. Suslick, The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays, Chem. Rev. 119 (2019) 231-292.
- [27] L. Pascual, I. Campos, J.L. Vivancos, G. Quintás, A. Loras, M.C. Martínez-Bisbal, R. Martínez-Máñez, F. Boronat, J.L. Ruiz-Cerdà, Detection of prostate cancer using a voltammetric electronic tongue, Analyst 141 (2016) 4562-4567.
- [28] J.E. Fitzgerald, E.T.H. Bui, N.M. Simon, H. Fenniri, Artificial Nose Technology: Status and Prospects in Diagnostics, Trends Biotechnol. 35 (2017) 33-42.
- [29] K. Głowacz, S. Skorupska, I. Grabowska-Jadach, R. Bro, P. Ciosek-Skibińska, Excitation-Emission Matrix Fluorescence Spectroscopy Coupled with PARAFAC Modeling for Viability Prediction of Cells, ACS Omega 8 (2023) 15968-15978.
- [30] K. Głowacz, S. Skorupska, I. Grabowska-Jadach, P. Ciosek-Skibínska, Excitation-emission matrix fluorescence spectroscopy for cell viability testing in UV-treated cell culture, RSC Adv. 12 (2022) 7652-7660.
- [31] K. Głowacz, M. Drozd, P. Ciosek-Skibińska, Excitation-emission fluorescence matrix acquired from glutathione capped CdSeS/ZnS quantum dots in combination with chemometric tools for pattern-based sensing of neurotransmitters, Microchim. Acta 188 (2021) 343.
- [32] K. Głowacz, U.E. Wawrzyniak, P. Ciosek-Skibińska, Comparison of various data analysis techniques applied for the classification of oligopeptides and amino acids by voltammetric electronic tongue, Sensors Actuators, B Chem. 331 (2021) 129354.
- [33] K. Głowacz, M. Drozd, W. Tokarska, N.E. Wezynfeld, P. Ciosek-Skibińska, Quantum dots-based “chemical tongue” for the discrimination of short-length Aβ peptides, Microchim. Acta 191 (2024) 1-7.
- [34] J.R. Lakowicz, Principles of Fluorescence Spectroscopy (2006) 1-8, 27-31.
- [35] S. Marose, C. Lindemann, T. Scheper, Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring, Biotechnol. Prog. 14 (1998) 63-74.
- [36] M. Zabadaj, K. Chreptowicz, J. Mierzejewska, P. Ciosek, Two-dimensional fluorescence as soft sensor in the monitoring of biotransformation performed by yeast, Biotechnol. Prog. 33 (2017) 299-307.
- [37] S.M. Kang, E. de Josselin de Jong, S.M. Higham, C.K. Hope, B. Il Kim, Fluorescence fingerprints of oral bacteria, J. Biophotonics 13 (2020) 1-7.
- [38] R.F. dos Santos, M. Paraskevaidi, D.M.A. Mann, D. Allsop, M.C.D. Santos, C.L.M. Morais, K.M.G. Lima, Alzheimer’s disease diagnosis by blood plasma molecular fluorescence spectroscopy (EEM), Sci. Rep. 12 (2022) 1-13.
- [39] S. Assawajaruwan, J. Reinalter, B. Hitzmann, Comparison of methods for wavelength combination selection from multi-wavelength fluorescence spectra for on-line monitoring of yeast cultivations, Anal. Bioanal. Chem. 409 (2017) 707-717.
- [40] F.S.L. Costa, P.P. Silva, C.L.M. Morais, R.C. Theodoro, T.D. Arantes, K.M.G. Lima, Comparison of multivariate classification algorithms using EEM fluorescence data to distinguish: Cryptococcus neoformans and Cryptococcus gattii pathogenic fungi, Anal. Methods 9 (2017) 3968-3976.
- [41] M.C.D. Santos, J.D. Monteiro, J.M.G. Araújo, K.M.G. Lima, Molecular fluorescence spectroscopy with multi-way analysis techniques detects spectral variations distinguishing uninfected serum versus dengue or chikungunya viral infected samples, Sci. Rep. 10 (2020) 1-13. [42] A.J. Lawaetz, R. Bro, M. Kamstrup-Nielsen, I.J. Christensen, L.N. Jørgensen, H.J. Nielsen, Fluorescence spectroscopy as a potential metabonomic tool for early detection of colorectal cancer, Metabolomics 8 (2012) 111-121.
- [43] B. Lin, M.S. Bergholt, D.P. Lau, Z. Huang, Diagnosis of early stage nasopharyngeal carcinoma using ultraviolet autofluorescence excitation-emission matrix spectroscopy and parallel factor analysis, Analyst 136 (2011) 3896-3903.
- [44] E. Mustorgi, C. Durante, C. Malegori, P. Greco, R. Bartoletti, M. Cocchi, M. Casale, An analytical approach based on excitation-emission fluorescence spectroscopy and chemometrics for the screening of prostate cancer through urine analysis: A proof-of-concept study, Chemom. Intell. Lab. Syst. 234 (2023) 104752.
- [45] P. Wu, L.N. Miao, H.F. Wang, X.G. Shao, X.P. Yan, A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots, Angew. Chemie - Int. Ed. 50 (2011) 8118-8121.
- [46] H. He, C. Li, Y. Tian, P. Wu, X. Hou, Phosphorescent Differential Sensing of Physiological Phosphates with Lanthanide Ions-Modified Mn-Doped ZnCdS Quantum Dots, Anal. Chem. 88 (2016) 5892-5897.
- [47] N. Chang, J. Mao, Y. Lu, J. Yang, Y. Pu, S. Zhang, Y. Liu, Time-resolved phosphorescent sensor array based on quantum dots for recognition of proteins, Sensors Actuators, B Chem. 233 (2016) 17-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c884bc8-4f04-4f48-907f-daabfe0b3e9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.